Nonlinear diffusion of fermions and bosons
A nonlinear diffusion equation is proposed to account for thermalization in fermionic and bosonic systems through analytical solutions. For constant transport coefficients, exact time-dependent solutions are derived through nonlinear transformations, and the corresponding local equilibration times a...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
21 November 2022
|
| In: |
epl
Year: 2022, Jahrgang: 140, Heft: 4, Pages: 1-7 |
| ISSN: | 1286-4854 |
| DOI: | 10.1209/0295-5075/aca17a |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1209/0295-5075/aca17a Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1209/0295-5075/aca17a |
| Verfasserangaben: | Georg Wolschin |
| Zusammenfassung: | A nonlinear diffusion equation is proposed to account for thermalization in fermionic and bosonic systems through analytical solutions. For constant transport coefficients, exact time-dependent solutions are derived through nonlinear transformations, and the corresponding local equilibration times are deduced. Fermi-Dirac and Bose-Einstein distributions emerge as stationary solutions of the nonlinear equation. As examples, local thermalization of quarks and gluons in relativistic heavy-ion collisions, and of ultracold atoms including time-dependent Bose-Einstein condensate formation are discussed. |
|---|---|
| Beschreibung: | Gesehen am 12.01.2023 |
| Beschreibung: | Online Resource |
| ISSN: | 1286-4854 |
| DOI: | 10.1209/0295-5075/aca17a |