Adversarial attacks and adversarial robustness in computational pathology

Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ghaffari Laleh, Narmin (VerfasserIn) , Truhn, Daniel (VerfasserIn) , Veldhuizen, Gregory Patrick (VerfasserIn) , Han, Tianyu (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Buelow, Roman D. (VerfasserIn) , Langer, Rupert (VerfasserIn) , Dislich, Bastian (VerfasserIn) , Boor, Peter (VerfasserIn) , Schulz, Volkmar (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 September 2022
In: Nature Communications
Year: 2022, Jahrgang: 13, Pages: 1-10
ISSN:2041-1723
DOI:10.1038/s41467-022-33266-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41467-022-33266-0
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41467-022-33266-0
Volltext
Verfasserangaben:Narmin Ghaffari Laleh, Daniel Truhn, Gregory Patrick Veldhuizen, Tianyu Han, Marko van Treeck, Roman D. Buelow, Rupert Langer, Bastian Dislich, Peter Boor, Volkmar Schulz & Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1831342057
003 DE-627
005 20250111010220.0
007 cr uuu---uuuuu
008 230118s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41467-022-33266-0  |2 doi 
035 |a (DE-627)1831342057 
035 |a (DE-599)KXP1831342057 
035 |a (OCoLC)1389536381 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Ghaffari Laleh, Narmin  |e VerfasserIn  |0 (DE-588)1278479465  |0 (DE-627)1831343088  |4 aut 
245 1 0 |a Adversarial attacks and adversarial robustness in computational pathology  |c Narmin Ghaffari Laleh, Daniel Truhn, Gregory Patrick Veldhuizen, Tianyu Han, Marko van Treeck, Roman D. Buelow, Rupert Langer, Bastian Dislich, Peter Boor, Volkmar Schulz & Jakob Nikolas Kather 
264 1 |c 29 September 2022 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.01.2023 
520 |a Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks. 
650 4 |a Cancer imaging 
650 4 |a Computational science 
650 4 |a Diagnostic markers 
650 4 |a Image processing 
650 4 |a Machine learning 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Veldhuizen, Gregory Patrick  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Han, Tianyu  |e VerfasserIn  |0 (DE-588)1278510001  |0 (DE-627)1831430037  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Buelow, Roman D.  |e VerfasserIn  |4 aut 
700 1 |a Langer, Rupert  |e VerfasserIn  |4 aut 
700 1 |a Dislich, Bastian  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Boor, Peter  |d 1979-  |e VerfasserIn  |0 (DE-588)140268456  |0 (DE-627)616972016  |0 (DE-576)316172979  |4 aut 
700 1 |a Schulz, Volkmar  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 13(2022) vom: Sept., Artikel-ID 5711, Seite 1-10  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a Adversarial attacks and adversarial robustness in computational pathology 
773 1 8 |g volume:13  |g year:2022  |g month:09  |g elocationid:5711  |g pages:1-10  |g extent:10  |a Adversarial attacks and adversarial robustness in computational pathology 
856 4 0 |u https://doi.org/10.1038/s41467-022-33266-0  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41467-022-33266-0  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20230118 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11  |y j 
999 |a KXP-PPN1831342057  |e 4249422747 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Adversarial attacks and adversarial robustness in computational pathology","title":"Adversarial attacks and adversarial robustness in computational pathology"}],"note":["Gesehen am 18.01.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"relHost":[{"origin":[{"publisher":"Springer Nature ; Nature Publishing Group UK","publisherPlace":"[London] ; [London]","dateIssuedDisp":"[2010]-"}],"pubHistory":["2010-"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 13.06.24"],"id":{"zdb":["2553671-0"],"issn":["2041-1723"],"eki":["626457688"]},"title":[{"title_sort":"Nature Communications","title":"Nature Communications"}],"part":{"year":"2022","pages":"1-10","extent":"10","text":"13(2022) vom: Sept., Artikel-ID 5711, Seite 1-10","volume":"13"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"626457688","disp":"Adversarial attacks and adversarial robustness in computational pathologyNature Communications"}],"person":[{"display":"Ghaffari Laleh, Narmin","family":"Ghaffari Laleh","given":"Narmin","role":"aut"},{"display":"Truhn, Daniel","given":"Daniel","role":"aut","family":"Truhn"},{"display":"Veldhuizen, Gregory Patrick","role":"aut","given":"Gregory Patrick","family":"Veldhuizen"},{"role":"aut","given":"Tianyu","family":"Han","display":"Han, Tianyu"},{"given":"Marko","role":"aut","family":"van Treeck","display":"van Treeck, Marko"},{"family":"Buelow","given":"Roman D.","role":"aut","display":"Buelow, Roman D."},{"family":"Langer","given":"Rupert","role":"aut","display":"Langer, Rupert"},{"display":"Dislich, Bastian","family":"Dislich","role":"aut","given":"Bastian"},{"display":"Boor, Peter","family":"Boor","role":"aut","given":"Peter"},{"display":"Schulz, Volkmar","family":"Schulz","role":"aut","given":"Volkmar"},{"display":"Kather, Jakob Nikolas","given":"Jakob Nikolas","role":"aut","family":"Kather"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"29 September 2022"}],"recId":"1831342057","physDesc":[{"extent":"10 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1038/s41467-022-33266-0"],"eki":["1831342057"]},"name":{"displayForm":["Narmin Ghaffari Laleh, Daniel Truhn, Gregory Patrick Veldhuizen, Tianyu Han, Marko van Treeck, Roman D. Buelow, Rupert Langer, Bastian Dislich, Peter Boor, Volkmar Schulz & Jakob Nikolas Kather"]}} 
SRT |a GHAFFARILAADVERSARIA2920