Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation

Disease-modifying management aims to prevent deterioration and progression of the disease, and not just to relieve symptoms. We present a solution for the management by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation approach. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Tianyu (Author) , Kather, Jakob Nikolas (Author) , Pedersoli, Federico (Author) , Zimmermann, Markus (Author) , Keil, Sebastian (Author) , Schulze-Hagen, Maximilian (Author) , Terwoelbeck, Marc (Author) , Isfort, Peter (Author) , Haarburger, Christoph (Author) , Kiessling, Fabian (Author) , Kuhl, Christiane (Author) , Schulz, Volkmar (Author) , Nebelung, Sven (Author) , Truhn, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 16 November 2022
In: Nature machine intelligence
Year: 2022, Volume: 4, Issue: 11, Pages: 1029-1039
ISSN:2522-5839
DOI:10.1038/s42256-022-00560-x
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-022-00560-x
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-022-00560-x
Get full text
Author Notes:Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Sven Nebelung, Daniel Truhn

MARC

LEADER 00000caa a2200000 c 4500
001 1831429446
003 DE-627
005 20230707002328.0
007 cr uuu---uuuuu
008 230118s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-022-00560-x  |2 doi 
035 |a (DE-627)1831429446 
035 |a (DE-599)KXP1831429446 
035 |a (OCoLC)1389536224 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Han, Tianyu  |e VerfasserIn  |0 (DE-588)1278510001  |0 (DE-627)1831430037  |4 aut 
245 1 0 |a Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation  |c Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Sven Nebelung, Daniel Truhn 
264 1 |c 16 November 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.01.2023 
520 |a Disease-modifying management aims to prevent deterioration and progression of the disease, and not just to relieve symptoms. We present a solution for the management by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation approach. To this end, we combined a regularized generative adversarial network and a latent nearest neighbour algorithm for joint optimization to generate plausible images of future time points. We evaluated our method on osteoarthritis data from a multicenter longitudinal study (the Osteoarthritis Initiative). With presymptomatic baseline data, our model is generative and considerably outperforms the end-to-end learning model in discriminating the progressive cohort. Two experiments were performed with seven radiologists. When no synthetic follow-up radiographs were provided, our model performed better than all seven radiologists. In cases in which the synthetic follow-ups generated by our model were made available to the radiologist for diagnosis support, the specificity and sensitivity of all readers in discriminating progressors increased from 72.3% to 88.6% and from 42.1% to 51.6%, respectively. Our results open up a new possibility of using model-based morphology and risk prediction to make predictions about disease occurrence, as demonstrated by the example of osteoarthritis. 
650 4 |a Health care 
650 4 |a Mathematics and computing 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Pedersoli, Federico  |e VerfasserIn  |4 aut 
700 1 |a Zimmermann, Markus  |e VerfasserIn  |4 aut 
700 1 |a Keil, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Schulze-Hagen, Maximilian  |e VerfasserIn  |4 aut 
700 1 |a Terwoelbeck, Marc  |e VerfasserIn  |4 aut 
700 1 |a Isfort, Peter  |e VerfasserIn  |4 aut 
700 1 |a Haarburger, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Kiessling, Fabian  |e VerfasserIn  |4 aut 
700 1 |a Kuhl, Christiane  |e VerfasserIn  |4 aut 
700 1 |a Schulz, Volkmar  |e VerfasserIn  |4 aut 
700 1 |a Nebelung, Sven  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 4(2022), 11, Seite 1029-1039  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation 
773 1 8 |g volume:4  |g year:2022  |g number:11  |g pages:1029-1039  |g extent:11  |a Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation 
856 4 0 |u https://doi.org/10.1038/s42256-022-00560-x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s42256-022-00560-x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230118 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 2 
999 |a KXP-PPN1831429446  |e 4249558096 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Sven Nebelung, Daniel Truhn"]},"id":{"eki":["1831429446"],"doi":["10.1038/s42256-022-00560-x"]},"recId":"1831429446","physDesc":[{"extent":"11 S."}],"origin":[{"dateIssuedDisp":"16 November 2022","dateIssuedKey":"2022"}],"person":[{"display":"Han, Tianyu","role":"aut","given":"Tianyu","family":"Han"},{"family":"Kather","given":"Jakob Nikolas","role":"aut","display":"Kather, Jakob Nikolas"},{"display":"Pedersoli, Federico","family":"Pedersoli","role":"aut","given":"Federico"},{"display":"Zimmermann, Markus","role":"aut","given":"Markus","family":"Zimmermann"},{"family":"Keil","role":"aut","given":"Sebastian","display":"Keil, Sebastian"},{"family":"Schulze-Hagen","role":"aut","given":"Maximilian","display":"Schulze-Hagen, Maximilian"},{"given":"Marc","role":"aut","family":"Terwoelbeck","display":"Terwoelbeck, Marc"},{"display":"Isfort, Peter","family":"Isfort","given":"Peter","role":"aut"},{"family":"Haarburger","given":"Christoph","role":"aut","display":"Haarburger, Christoph"},{"display":"Kiessling, Fabian","family":"Kiessling","role":"aut","given":"Fabian"},{"family":"Kuhl","given":"Christiane","role":"aut","display":"Kuhl, Christiane"},{"family":"Schulz","role":"aut","given":"Volkmar","display":"Schulz, Volkmar"},{"display":"Nebelung, Sven","family":"Nebelung","given":"Sven","role":"aut"},{"given":"Daniel","role":"aut","family":"Truhn","display":"Truhn, Daniel"}],"relHost":[{"pubHistory":["Volume 1, no. 1 (January 2019)-"],"origin":[{"publisher":"Springer Nature Publishing","publisherPlace":"[London]","dateIssuedDisp":"[2019]-"}],"title":[{"title_sort":"Nature machine intelligence","title":"Nature machine intelligence"}],"part":{"pages":"1029-1039","text":"4(2022), 11, Seite 1029-1039","extent":"11","issue":"11","year":"2022","volume":"4"},"id":{"eki":["1025147669"],"issn":["2522-5839"],"zdb":["2933875-X"]},"note":["Gesehen am 30.04.25"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"1025147669","physDesc":[{"extent":"Online-Ressource"}],"disp":"Image prediction of disease progression for osteoarthritis by style-based manifold extrapolationNature machine intelligence"}],"title":[{"title_sort":"Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation","title":"Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"note":["Gesehen am 18.01.2023"]} 
SRT |a HANTIANYUKIMAGEPREDI1620