Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation

Disease-modifying management aims to prevent deterioration and progression of the disease, and not just to relieve symptoms. We present a solution for the management by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation approach. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Han, Tianyu (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Pedersoli, Federico (VerfasserIn) , Zimmermann, Markus (VerfasserIn) , Keil, Sebastian (VerfasserIn) , Schulze-Hagen, Maximilian (VerfasserIn) , Terwoelbeck, Marc (VerfasserIn) , Isfort, Peter (VerfasserIn) , Haarburger, Christoph (VerfasserIn) , Kiessling, Fabian (VerfasserIn) , Kuhl, Christiane (VerfasserIn) , Schulz, Volkmar (VerfasserIn) , Nebelung, Sven (VerfasserIn) , Truhn, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 November 2022
In: Nature machine intelligence
Year: 2022, Jahrgang: 4, Heft: 11, Pages: 1029-1039
ISSN:2522-5839
DOI:10.1038/s42256-022-00560-x
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-022-00560-x
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-022-00560-x
Volltext
Verfasserangaben:Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Sven Nebelung, Daniel Truhn
Beschreibung
Zusammenfassung:Disease-modifying management aims to prevent deterioration and progression of the disease, and not just to relieve symptoms. We present a solution for the management by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation approach. To this end, we combined a regularized generative adversarial network and a latent nearest neighbour algorithm for joint optimization to generate plausible images of future time points. We evaluated our method on osteoarthritis data from a multicenter longitudinal study (the Osteoarthritis Initiative). With presymptomatic baseline data, our model is generative and considerably outperforms the end-to-end learning model in discriminating the progressive cohort. Two experiments were performed with seven radiologists. When no synthetic follow-up radiographs were provided, our model performed better than all seven radiologists. In cases in which the synthetic follow-ups generated by our model were made available to the radiologist for diagnosis support, the specificity and sensitivity of all readers in discriminating progressors increased from 72.3% to 88.6% and from 42.1% to 51.6%, respectively. Our results open up a new possibility of using model-based morphology and risk prediction to make predictions about disease occurrence, as demonstrated by the example of osteoarthritis.
Beschreibung:Gesehen am 18.01.2023
Beschreibung:Online Resource
ISSN:2522-5839
DOI:10.1038/s42256-022-00560-x