Exceptional poles of local L-functions for GSp(4) with respect to split Bessel models
This paper deals with the local nonarchimedean L-factors of the Piateskii-Shapiro L-series for automorphic representations of the group GSp(4). The local factors may have exceptional poles that a priori depend on the choice of a Bessel model. We compute the exceptional local L-factors for split Bess...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2023
|
| In: |
Journal of number theory
Year: 2023, Volume: 243, Pages: 518-560 |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2022.07.001 |
| Online Access: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jnt.2022.07.001 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0022314X22001378 |
| Author Notes: | Rainer Weissauer |
| Summary: | This paper deals with the local nonarchimedean L-factors of the Piateskii-Shapiro L-series for automorphic representations of the group GSp(4). The local factors may have exceptional poles that a priori depend on the choice of a Bessel model. We compute the exceptional local L-factors for split Bessel models and show their independence from the choice of the Bessel model. This complements previous results on the regular part of these L-factors. |
|---|---|
| Item Description: | Online veröffentlicht am 25. Juli 2022, Dateiversion vom 27. Oktober 2022 Gesehen am 31.01.2023 |
| Physical Description: | Online Resource |
| ISSN: | 1096-1658 |
| DOI: | 10.1016/j.jnt.2022.07.001 |