Medical applications with disentanglements: First MICCAI Workshop, MAD 2022, held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings

Applying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaften: MICCAI MAD Workshop, Singapur; Online (VerfasserIn) , International Conference on Medical Image Computing and Computer Assisted Intervention (BerichterstatterIn)
Weitere Verfasser: Fragemann, Jana (HerausgeberIn) , Li, Jianning (HerausgeberIn) , Liu, Xiao (HerausgeberIn) , Tsaftaris, Sotirios A. (HerausgeberIn) , Egger, Jan (HerausgeberIn) , Kleesiek, Jens Philipp (HerausgeberIn)
Dokumenttyp: Article (Journal) Konferenzschrift
Sprache:Englisch
Veröffentlicht: Cham Springer Nature Switzerland 2023.
Cham Imprint: Springer 2023.
Ausgabe:1st ed. 2023.
Schriftenreihe:Lecture Notes in Computer Science 13823
DOI:10.1007/978-3-031-25046-0
Schlagworte:
Online-Zugang:Resolving-System, lizenzpflichtig: https://doi.org/10.1007/978-3-031-25046-0
Volltext
Verfasserangaben:edited by Jana Fragemann, Jianning Li, Xiao Liu, Sotirios A. Tsaftaris, Jan Egger, Jens Kleesiek
Beschreibung
Zusammenfassung:Applying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations -- Instance-Specific Augmentation of Brain MRIs with Variational Autoencoder -- Low-rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement -- Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder -- Disentangling Factors of Morpholigical Variation in an Invertible Brain Aging Model -- A study of representational properties of unsupervised anomaly detection in brain MRI.
This book constitutes the post-conference proceedings of the First MICCAI Workshop on Medical Applications with Disentanglements, MAD 2022, held in conjunction with MICCAI 2022, in Singapore, on September22, 2022. The 8 full papers presented in this book together with one short paper were carefully reviewed and cover generative adversarial networks (GAN), variational autoencoders (VAE) and normalizing-flow architectures as well as a wide range of medical applications, like brain age prediction, skull reconstruction and unsupervised pathology disentanglement.
Beschreibung:Online Resource
ISBN:9783031250460
DOI:10.1007/978-3-031-25046-0