Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions

Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Whiteman, Andrew (VerfasserIn) , Bartsch, Andreas J. (VerfasserIn) , Kang, Jian (VerfasserIn) , Johnson, Timothy D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2022
In: The annals of applied statistics
Year: 2022, Jahrgang: 16, Heft: 4, Pages: 2626-2647
ISSN:1941-7330
DOI:10.1214/22-AOAS1606
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1214/22-AOAS1606
Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-4/Bayesian-inference-for-brain-activity-from-functional-magnetic-resonance-imaging/10.1214/22-AOAS1606.full
Volltext
Verfasserangaben:by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson

MARC

LEADER 00000caa a2200000 c 4500
001 1836334001
003 DE-627
005 20230706233027.0
007 cr uuu---uuuuu
008 230216s2022 xx |||||o 00| ||eng c
024 7 |a 10.1214/22-AOAS1606  |2 doi 
035 |a (DE-627)1836334001 
035 |a (DE-599)KXP1836334001 
035 |a (OCoLC)1389535638 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Whiteman, Andrew  |e VerfasserIn  |0 (DE-588)1281137375  |0 (DE-627)1836335156  |4 aut 
245 1 0 |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions  |c by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson 
264 1 |c December 2022 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.02.2023 
500 |a First available in Project Euclid: 26 September 2022 
520 |a Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone. 
650 4 |a Bayesian nonparametrics 
650 4 |a data integration 
650 4 |a Gaussian process 
650 4 |a Imaging statistics 
650 4 |a presurgical fMRI 
700 1 |a Bartsch, Andreas J.  |d 1968-  |e VerfasserIn  |0 (DE-588)122450191  |0 (DE-627)08195073X  |0 (DE-576)250275260  |4 aut 
700 1 |a Kang, Jian  |e VerfasserIn  |4 aut 
700 1 |a Johnson, Timothy D.  |e VerfasserIn  |0 (DE-588)1231012692  |0 (DE-627)1753353092  |4 aut 
773 0 8 |i Enthalten in  |t The annals of applied statistics  |d Beachwood, Ohio : Inst. of Mathematical Statistics (IMS), 2007  |g 16(2022), 4, Seite 2626-2647  |h Online-Ressource  |w (DE-627)53744680X  |w (DE-600)2376910-5  |w (DE-576)267763565  |x 1941-7330  |7 nnas  |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions 
773 1 8 |g volume:16  |g year:2022  |g number:4  |g pages:2626-2647  |g extent:22  |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions 
856 4 0 |u https://doi.org/10.1214/22-AOAS1606  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-4/Bayesian-inference-for-brain-activity-from-functional-magnetic-resonance-imaging/10.1214/22-AOAS1606.full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230216 
993 |a Article 
994 |a 2022 
998 |g 122450191  |a Bartsch, Andreas J.  |m 122450191:Bartsch, Andreas J.  |d 50000  |e 50000PB122450191  |k 0/50000/  |p 2 
999 |a KXP-PPN1836334001  |e 4272880101 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson"]},"id":{"doi":["10.1214/22-AOAS1606"],"eki":["1836334001"]},"origin":[{"dateIssuedDisp":"December 2022","dateIssuedKey":"2022"}],"relHost":[{"title":[{"subtitle":"an official journal of the Institute of Mathematical Statistics","title":"The annals of applied statistics","title_sort":"annals of applied statistics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.08.2017"],"disp":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutionsThe annals of applied statistics","recId":"53744680X","language":["eng"],"corporate":[{"role":"isb","display":"Institute of Mathematical Statistics","roleDisplay":"Herausgebendes Organ"}],"pubHistory":["1.2007 -"],"part":{"pages":"2626-2647","issue":"4","year":"2022","extent":"22","text":"16(2022), 4, Seite 2626-2647","volume":"16"},"origin":[{"publisherPlace":"Beachwood, Ohio ; Ithaca, NY","dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"Inst. of Mathematical Statistics (IMS) ; Cornell University Library"}],"id":{"issn":["1941-7330"],"eki":["53744680X"],"zdb":["2376910-5"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"22 S."}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Whiteman, Andrew","given":"Andrew","family":"Whiteman"},{"family":"Bartsch","given":"Andreas J.","display":"Bartsch, Andreas J.","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Jian","family":"Kang","role":"aut","display":"Kang, Jian","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Johnson, Timothy D.","roleDisplay":"VerfasserIn","given":"Timothy D.","family":"Johnson"}],"title":[{"title":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions","title_sort":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions"}],"language":["eng"],"recId":"1836334001","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 16.02.2023","First available in Project Euclid: 26 September 2022"]} 
SRT |a WHITEMANANBAYESIANIN2022