Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions
Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signa...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
December 2022
|
| In: |
The annals of applied statistics
Year: 2022, Jahrgang: 16, Heft: 4, Pages: 2626-2647 |
| ISSN: | 1941-7330 |
| DOI: | 10.1214/22-AOAS1606 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1214/22-AOAS1606 Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-4/Bayesian-inference-for-brain-activity-from-functional-magnetic-resonance-imaging/10.1214/22-AOAS1606.full |
| Verfasserangaben: | by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1836334001 | ||
| 003 | DE-627 | ||
| 005 | 20230706233027.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230216s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1214/22-AOAS1606 |2 doi | |
| 035 | |a (DE-627)1836334001 | ||
| 035 | |a (DE-599)KXP1836334001 | ||
| 035 | |a (OCoLC)1389535638 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Whiteman, Andrew |e VerfasserIn |0 (DE-588)1281137375 |0 (DE-627)1836335156 |4 aut | |
| 245 | 1 | 0 | |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions |c by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson |
| 264 | 1 | |c December 2022 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.02.2023 | ||
| 500 | |a First available in Project Euclid: 26 September 2022 | ||
| 520 | |a Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone. | ||
| 650 | 4 | |a Bayesian nonparametrics | |
| 650 | 4 | |a data integration | |
| 650 | 4 | |a Gaussian process | |
| 650 | 4 | |a Imaging statistics | |
| 650 | 4 | |a presurgical fMRI | |
| 700 | 1 | |a Bartsch, Andreas J. |d 1968- |e VerfasserIn |0 (DE-588)122450191 |0 (DE-627)08195073X |0 (DE-576)250275260 |4 aut | |
| 700 | 1 | |a Kang, Jian |e VerfasserIn |4 aut | |
| 700 | 1 | |a Johnson, Timothy D. |e VerfasserIn |0 (DE-588)1231012692 |0 (DE-627)1753353092 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The annals of applied statistics |d Beachwood, Ohio : Inst. of Mathematical Statistics (IMS), 2007 |g 16(2022), 4, Seite 2626-2647 |h Online-Ressource |w (DE-627)53744680X |w (DE-600)2376910-5 |w (DE-576)267763565 |x 1941-7330 |7 nnas |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions |
| 773 | 1 | 8 | |g volume:16 |g year:2022 |g number:4 |g pages:2626-2647 |g extent:22 |a Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions |
| 856 | 4 | 0 | |u https://doi.org/10.1214/22-AOAS1606 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-4/Bayesian-inference-for-brain-activity-from-functional-magnetic-resonance-imaging/10.1214/22-AOAS1606.full |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230216 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 122450191 |a Bartsch, Andreas J. |m 122450191:Bartsch, Andreas J. |d 50000 |e 50000PB122450191 |k 0/50000/ |p 2 | ||
| 999 | |a KXP-PPN1836334001 |e 4272880101 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["by Andrew S. Whiteman, Andreas J. Bartsch, Jian Kang and Timothy D. Johnson"]},"id":{"doi":["10.1214/22-AOAS1606"],"eki":["1836334001"]},"origin":[{"dateIssuedDisp":"December 2022","dateIssuedKey":"2022"}],"relHost":[{"title":[{"subtitle":"an official journal of the Institute of Mathematical Statistics","title":"The annals of applied statistics","title_sort":"annals of applied statistics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.08.2017"],"disp":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutionsThe annals of applied statistics","recId":"53744680X","language":["eng"],"corporate":[{"role":"isb","display":"Institute of Mathematical Statistics","roleDisplay":"Herausgebendes Organ"}],"pubHistory":["1.2007 -"],"part":{"pages":"2626-2647","issue":"4","year":"2022","extent":"22","text":"16(2022), 4, Seite 2626-2647","volume":"16"},"origin":[{"publisherPlace":"Beachwood, Ohio ; Ithaca, NY","dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"Inst. of Mathematical Statistics (IMS) ; Cornell University Library"}],"id":{"issn":["1941-7330"],"eki":["53744680X"],"zdb":["2376910-5"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"22 S."}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Whiteman, Andrew","given":"Andrew","family":"Whiteman"},{"family":"Bartsch","given":"Andreas J.","display":"Bartsch, Andreas J.","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Jian","family":"Kang","role":"aut","display":"Kang, Jian","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Johnson, Timothy D.","roleDisplay":"VerfasserIn","given":"Timothy D.","family":"Johnson"}],"title":[{"title":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions","title_sort":"Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions"}],"language":["eng"],"recId":"1836334001","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 16.02.2023","First available in Project Euclid: 26 September 2022"]} | ||
| SRT | |a WHITEMANANBAYESIANIN2022 | ||