Medical domain knowledge in domain-agnostic generative AI

The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not been systematically explored. If GLI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kather, Jakob Nikolas (VerfasserIn) , Ghaffari Laleh, Narmin (VerfasserIn) , Foersch, Sebastian (VerfasserIn) , Truhn, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 July 2022
In: npj digital medicine
Year: 2022, Jahrgang: 5, Pages: 1-5
ISSN:2398-6352
DOI:10.1038/s41746-022-00634-5
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41746-022-00634-5
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41746-022-00634-5
Volltext
Verfasserangaben:Jakob Nikolas Kather, Narmin Ghaffari Laleh, Sebastian Foersch and Daniel Truhn

MARC

LEADER 00000caa a2200000 c 4500
001 1837701784
003 DE-627
005 20230706231715.0
007 cr uuu---uuuuu
008 230228s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41746-022-00634-5  |2 doi 
035 |a (DE-627)1837701784 
035 |a (DE-599)KXP1837701784 
035 |a (OCoLC)1389534389 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
245 1 0 |a Medical domain knowledge in domain-agnostic generative AI  |c Jakob Nikolas Kather, Narmin Ghaffari Laleh, Sebastian Foersch and Daniel Truhn 
264 1 |c 11 July 2022 
300 |a 5 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.02.2023 
520 |a The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not been systematically explored. If GLIDE had useful medical knowledge, it could be used for medical image analysis tasks, a domain in which AI systems are still highly engineered towards a single use-case. Here we show that the publicly available GLIDE model has reasonably strong representations of key topics in cancer research and oncology, in particular the general style of histopathology images and multiple facets of diseases, pathological processes and laboratory assays. However, GLIDE seems to lack useful representations of the style and content of radiology data. Our findings demonstrate that domain-agnostic generative AI models can learn relevant medical concepts without explicit training. Thus, GLIDE and similar models might be useful for medical image processing tasks in the future - particularly with additional domain-specific fine-tuning. 
650 4 |a Biomedical engineering 
650 4 |a Data integration 
650 4 |a Machine learning 
700 1 |a Ghaffari Laleh, Narmin  |e VerfasserIn  |4 aut 
700 1 |a Foersch, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t npj digital medicine  |d [Basingstoke] : Macmillan Publishers Limited, 2016  |g 5(2022) vom: Juli, Artikel-ID 90, Seite 1-5  |h Online-Ressource  |w (DE-627)1016587104  |w (DE-600)2925182-5  |w (DE-576)501513582  |x 2398-6352  |7 nnas  |a Medical domain knowledge in domain-agnostic generative AI 
773 1 8 |g volume:5  |g year:2022  |g month:07  |g elocationid:90  |g pages:1-5  |g extent:5  |a Medical domain knowledge in domain-agnostic generative AI 
856 4 0 |u https://doi.org/10.1038/s41746-022-00634-5  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41746-022-00634-5  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230228 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1837701784  |e 4277681638 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1837701784"],"doi":["10.1038/s41746-022-00634-5"]},"relHost":[{"pubHistory":["2016-"],"id":{"issn":["2398-6352"],"eki":["1016587104"],"zdb":["2925182-5"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"npj digital medicine","title":"npj digital medicine"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"part":{"pages":"1-5","extent":"5","text":"5(2022) vom: Juli, Artikel-ID 90, Seite 1-5","volume":"5","year":"2022"},"note":["Gesehen am 06. September 2019"],"recId":"1016587104","origin":[{"dateIssuedDisp":"[2016]-","publisher":"Macmillan Publishers Limited","publisherPlace":"[Basingstoke]"}],"disp":"Medical domain knowledge in domain-agnostic generative AInpj digital medicine"}],"title":[{"title_sort":"Medical domain knowledge in domain-agnostic generative AI","title":"Medical domain knowledge in domain-agnostic generative AI"}],"physDesc":[{"extent":"5 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Jakob Nikolas","role":"aut","display":"Kather, Jakob Nikolas","family":"Kather"},{"display":"Ghaffari Laleh, Narmin","family":"Ghaffari Laleh","given":"Narmin","role":"aut"},{"given":"Sebastian","role":"aut","display":"Foersch, Sebastian","family":"Foersch"},{"display":"Truhn, Daniel","family":"Truhn","given":"Daniel","role":"aut"}],"recId":"1837701784","note":["Gesehen am 28.02.2023"],"language":["eng"],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"11 July 2022"}],"name":{"displayForm":["Jakob Nikolas Kather, Narmin Ghaffari Laleh, Sebastian Foersch and Daniel Truhn"]}} 
SRT |a KATHERJAKOMEDICALDOM1120