Evolution by non-convex functionals

We establish a semi-group solution concept for flows that are generated by generalized minimizers of non-convex energy functionals. We use relaxation and convexification to define these generalized minimizers. The main part of this work consists in exemplary validation of the solution concept for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elbau, Peter (VerfasserIn) , Grasmair, Markus (VerfasserIn) , Lenzen, Frank (VerfasserIn) , Scherzer, Otmar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 Jun 2010
In: Numerical functional analysis and optimization
Year: 2010, Jahrgang: 31, Heft: 4, Pages: 489-517
ISSN:1532-2467
DOI:10.1080/01630563.2010.485853
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/01630563.2010.485853
Volltext
Verfasserangaben:Peter Elbau, Markus Grasmair, Frank Lenzen & Otmar Scherzer
Beschreibung
Zusammenfassung:We establish a semi-group solution concept for flows that are generated by generalized minimizers of non-convex energy functionals. We use relaxation and convexification to define these generalized minimizers. The main part of this work consists in exemplary validation of the solution concept for a non-convex energy functional. For rotationally invariant initial data it is compared with the solution of the mean curvature flow equation. The basic example relates the mean curvature flow equation with a sequence of iterative minimizers of a family of non-convex energy functionals. Together with the numerical evidence this corroborates the claim that the non-convex semi-group solution concept defines, in general, a solution of the mean curvature equation.
Beschreibung:Gesehen am 06.03.2023
Beschreibung:Online Resource
ISSN:1532-2467
DOI:10.1080/01630563.2010.485853