Evolution by non-convex functionals

We establish a semi-group solution concept for flows that are generated by generalized minimizers of non-convex energy functionals. We use relaxation and convexification to define these generalized minimizers. The main part of this work consists in exemplary validation of the solution concept for a...

Full description

Saved in:
Bibliographic Details
Main Authors: Elbau, Peter (Author) , Grasmair, Markus (Author) , Lenzen, Frank (Author) , Scherzer, Otmar (Author)
Format: Article (Journal)
Language:English
Published: 08 Jun 2010
In: Numerical functional analysis and optimization
Year: 2010, Volume: 31, Issue: 4, Pages: 489-517
ISSN:1532-2467
DOI:10.1080/01630563.2010.485853
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/01630563.2010.485853
Get full text
Author Notes:Peter Elbau, Markus Grasmair, Frank Lenzen & Otmar Scherzer

MARC

LEADER 00000caa a2200000 c 4500
001 1838205608
003 DE-627
005 20230710154017.0
007 cr uuu---uuuuu
008 230306s2010 xx |||||o 00| ||eng c
024 7 |a 10.1080/01630563.2010.485853  |2 doi 
035 |a (DE-627)1838205608 
035 |a (DE-599)KXP1838205608 
035 |a (OCoLC)1389821253 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Elbau, Peter  |e VerfasserIn  |0 (DE-588)1282572865  |0 (DE-627)1838206795  |4 aut 
245 1 0 |a Evolution by non-convex functionals  |c Peter Elbau, Markus Grasmair, Frank Lenzen & Otmar Scherzer 
264 1 |c 08 Jun 2010 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.03.2023 
520 |a We establish a semi-group solution concept for flows that are generated by generalized minimizers of non-convex energy functionals. We use relaxation and convexification to define these generalized minimizers. The main part of this work consists in exemplary validation of the solution concept for a non-convex energy functional. For rotationally invariant initial data it is compared with the solution of the mean curvature flow equation. The basic example relates the mean curvature flow equation with a sequence of iterative minimizers of a family of non-convex energy functionals. Together with the numerical evidence this corroborates the claim that the non-convex semi-group solution concept defines, in general, a solution of the mean curvature equation. 
650 4 |a 35A15 
650 4 |a 37L05 
650 4 |a 47H20 
650 4 |a 49J45 
650 4 |a Geometric partial differential equations 
650 4 |a Mean curvature motion 
650 4 |a Non-convex bound variation 
650 4 |a Non-convex functionals 
650 4 |a Non-convex semi-group theory 
650 4 |a Relaxation 
700 1 |a Grasmair, Markus  |e VerfasserIn  |4 aut 
700 1 |a Lenzen, Frank  |e VerfasserIn  |0 (DE-588)1065910673  |0 (DE-627)816929254  |0 (DE-576)425580652  |4 aut 
700 1 |a Scherzer, Otmar  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Numerical functional analysis and optimization  |d London : Taylor and Francis, 1979  |g 31(2010), 4, Seite 489-517  |h Online-Ressource  |w (DE-627)26688363X  |w (DE-600)1468214-X  |w (DE-576)116330856  |x 1532-2467  |7 nnas  |a Evolution by non-convex functionals 
773 1 8 |g volume:31  |g year:2010  |g number:4  |g pages:489-517  |g extent:29  |a Evolution by non-convex functionals 
856 4 0 |u https://doi.org/10.1080/01630563.2010.485853  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230306 
993 |a Article 
994 |a 2010 
998 |g 1065910673  |a Lenzen, Frank  |m 1065910673:Lenzen, Frank  |d 110000  |e 110000PL1065910673  |k 0/110000/  |p 3 
999 |a KXP-PPN1838205608  |e 4283630608 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 06.03.2023"],"language":["eng"],"recId":"1838205608","person":[{"given":"Peter","family":"Elbau","role":"aut","display":"Elbau, Peter","roleDisplay":"VerfasserIn"},{"given":"Markus","family":"Grasmair","role":"aut","display":"Grasmair, Markus","roleDisplay":"VerfasserIn"},{"display":"Lenzen, Frank","roleDisplay":"VerfasserIn","role":"aut","family":"Lenzen","given":"Frank"},{"roleDisplay":"VerfasserIn","display":"Scherzer, Otmar","role":"aut","family":"Scherzer","given":"Otmar"}],"title":[{"title_sort":"Evolution by non-convex functionals","title":"Evolution by non-convex functionals"}],"physDesc":[{"extent":"29 S."}],"relHost":[{"id":{"zdb":["1468214-X"],"eki":["26688363X"],"issn":["1532-2467"]},"origin":[{"dateIssuedDisp":"1979-","dateIssuedKey":"1979","publisher":"Taylor and Francis ; Dekker","publisherPlace":"London ; New York, NY"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Numerical functional analysis and optimization","title":"Numerical functional analysis and optimization","subtitle":"an international journal of rapid publication"}],"part":{"pages":"489-517","issue":"4","year":"2010","extent":"29","volume":"31","text":"31(2010), 4, Seite 489-517"},"pubHistory":["1.1979 -"],"language":["eng"],"recId":"26688363X","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 04.07.07"],"disp":"Evolution by non-convex functionalsNumerical functional analysis and optimization"}],"name":{"displayForm":["Peter Elbau, Markus Grasmair, Frank Lenzen & Otmar Scherzer"]},"origin":[{"dateIssuedDisp":"08 Jun 2010","dateIssuedKey":"2010"}],"id":{"eki":["1838205608"],"doi":["10.1080/01630563.2010.485853"]}} 
SRT |a ELBAUPETEREVOLUTIONB0820