How to GAN higher jet resolution
QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduc...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
23 September 2022
|
| In: |
SciPost physics
Year: 2022, Volume: 13, Issue: 3, Pages: 1-22 |
| ISSN: | 2542-4653 |
| DOI: | 10.21468/SciPostPhys.13.3.064 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.13.3.064 Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.13.3.064 |
| Author Notes: | Pierre Baldi, Lukas Blecher, Anja Butter, Julian Collado, Jessica N. Howard, Fabian Keilbach, Tilman Plehn, Gregor Kasieczka and Daniel Whiteson |
| Summary: | QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduces their main features even without training on pure samples. In addition, we show how a slim network architecture can be constructed once we have control of the full network performance. |
|---|---|
| Item Description: | Im PDF ist irrtümlich ein falsches Erscheinungsdatum angegeben: 23-09-2023 Gesehen am 15.11.2023 |
| Physical Description: | Online Resource |
| ISSN: | 2542-4653 |
| DOI: | 10.21468/SciPostPhys.13.3.064 |