Verifying genuine high-order entanglement

High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Che-Ming (VerfasserIn) , Chen, Kai (VerfasserIn) , Reingruber, Andreas (VerfasserIn) , Chen, Yueh-Nan (VerfasserIn) , Pan, Jian-Wei (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 November 2010
In: Physical review letters
Year: 2010, Jahrgang: 105, Heft: 21, Pages: 1-4
ISSN:1079-7114
DOI:10.1103/PhysRevLett.105.210504
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevLett.105.210504
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevLett.105.210504
Volltext
Verfasserangaben:Che-Ming Li, Kai Chen, Andreas Reingruber, Yueh-Nan Chen, and Jian-Wei Pan
Beschreibung
Zusammenfassung:High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.
Beschreibung:Gesehen am 14.03.2023
Beschreibung:Online Resource
ISSN:1079-7114
DOI:10.1103/PhysRevLett.105.210504