A Bloch-Ogus theorem for henselian local rings in mixed characteristic

We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmidt, Johannes (Author) , Strunk, Florian (Author)
Format: Article (Journal)
Language:English
Published: 27 February 2023
In: Mathematische Zeitschrift
Year: 2023, Volume: 303, Issue: 4, Pages: 1-24
ISSN:1432-1823
DOI:10.1007/s00209-023-03223-8
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00209-023-03223-8
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00209-023-03223-8
Get full text
Author Notes:Johannes Schmidt, Florian Strunk
Description
Summary:We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for étale cohomology over a henselian discrete valuation ring with infinite residue field.
Item Description:Gesehen am 07.12.2023
Physical Description:Online Resource
ISSN:1432-1823
DOI:10.1007/s00209-023-03223-8