A Bloch-Ogus theorem for henselian local rings in mixed characteristic

We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmidt, Johannes (VerfasserIn) , Strunk, Florian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 February 2023
In: Mathematische Zeitschrift
Year: 2023, Jahrgang: 303, Heft: 4, Pages: 1-24
ISSN:1432-1823
DOI:10.1007/s00209-023-03223-8
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00209-023-03223-8
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00209-023-03223-8
Volltext
Verfasserangaben:Johannes Schmidt, Florian Strunk
Beschreibung
Zusammenfassung:We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for étale cohomology over a henselian discrete valuation ring with infinite residue field.
Beschreibung:Gesehen am 07.12.2023
Beschreibung:Online Resource
ISSN:1432-1823
DOI:10.1007/s00209-023-03223-8