A Bloch-Ogus theorem for henselian local rings in mixed characteristic
We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
27 February 2023
|
| In: |
Mathematische Zeitschrift
Year: 2023, Jahrgang: 303, Heft: 4, Pages: 1-24 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-023-03223-8 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00209-023-03223-8 Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00209-023-03223-8 |
| Verfasserangaben: | Johannes Schmidt, Florian Strunk |
| Zusammenfassung: | We show a conditional exactness statement for the Nisnevich Gersten complex associated to an A1-invariant cohomology theory with Nisnevich descent for smooth schemes over a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich analogue of the Bloch-Ogus theorem for étale cohomology over a henselian discrete valuation ring with infinite residue field. |
|---|---|
| Beschreibung: | Gesehen am 07.12.2023 |
| Beschreibung: | Online Resource |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-023-03223-8 |