Lithium-rich antiperovskite (Li2Fe)SeO: a high-performance cathode material for lithium-ion batteries

Lithium-rich antiperovskite cathode materials with cationic and anionic redox bi-functionality are promising candidates for lithium-ion batteries (LIB) with high energy density. Here, we report the synthesis of antiperovskite (Li2Fe)SeO by means of an one-step solid-state method which results in pha...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed, M. A. A. (Author) , Singer, Lennart (Author) , Hahn, Hannes (Author) , Djendjur, Denis (Author) , Özkara, Attila (Author) , Thauer, Elisa (Author) , González Martínez-País, Ignacio (Author) , Hantusch, Martin (Author) , Büchner, Bernd (Author) , Hampel, Simon (Author) , Klingeler, Rüdiger (Author) , Gräßler, Nico (Author)
Format: Article (Journal)
Language:English
Published: 28 February 2023
In: Journal of power sources
Year: 2023, Volume: 558, Pages: 1-7
ISSN:1873-2755
DOI:10.1016/j.jpowsour.2022.232547
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jpowsour.2022.232547
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0378775322015245
Get full text
Author Notes:M.A.A. Mohamed, L. Singer, H. Hahn, D. Djendjur, A. Özkara, E. Thauer, I.G. Gonzalez-Martinez, M. Hantusch, B. Büchner, S. Hampel, R. Klingeler, N. Gräßler
Description
Summary:Lithium-rich antiperovskite cathode materials with cationic and anionic redox bi-functionality are promising candidates for lithium-ion batteries (LIB) with high energy density. Here, we report the synthesis of antiperovskite (Li2Fe)SeO by means of an one-step solid-state method which results in phase pure material consisting of predominantly micrometer-sized particles. Thermodynamic investigations confirm high thermal stability of (Li2Fe)SeO up to 1200 °C without any indication of phase decomposition. Electrochemical studies of (Li2Fe)SeO-based cathodes show a multi-step redox process involving electrochemical activity of cationic Fe and anionic Se. Rate capability tests yield a discharge capacity of 150 mAh g−1 and 100 mAh g−1 at 0.1 C and 1 C, respectively. In-depth kinetic analyses by in-situ electrochemical impedance spectroscopy indicate a considerable structural change primarily in the first cycle, however, the structure stabilizes afterwards in the following cycles. Accordingly, we observe superior high cycling stability. Upon cycling, the material displays only a slight capacity fading while still delivering 140 mAh g−1after 100 cycles at 0.1 C. Our findings highlight the high performance and compelling cycling stability of (Li2Fe)SeO as cathode material in lithium-ion batteries.
Item Description:Im Titel ist die Zahl 2 tiefgestellt
Gesehen am 17.04.2023
Physical Description:Online Resource
ISSN:1873-2755
DOI:10.1016/j.jpowsour.2022.232547