Decidability of the two-quantifier theory of the recursively enumerable weak truth-table degrees and other distributive upper semi-lattices

We give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e. wtt-degrees by a map which preserves the least and greatest ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Fejer, Peter A. (VerfasserIn) , Lempp, Steffen (VerfasserIn) , Lerman, Manuel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1996
In: The journal of symbolic logic
Year: 1996, Jahrgang: 61, Heft: 3, Pages: 880-905
ISSN:1943-5886
DOI:10.2307/2275790
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2307/2275790
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/decidability-of-the-twoquantifier-theory-of-the-recursively-enumerable-weak-truthtable-degrees-and-other-distributive-upper-semilattices/278E9ACC07A3217F0595D6371716D8DE
Volltext
Verfasserangaben:Klaus Ambos-Spies, Peter A. Fejer, Steffen Lempp, Manuel Lerman
Beschreibung
Zusammenfassung:We give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e. wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are disjoint.We formulate general criteria that allow one to conclude that a distributive upper semi-lattice has a decidable two-quantifier theory. These criteria are applied not only to the weak truth-table degrees of the recursively enumerable sets but also to various substructures of the polynomial many-one (pm) degrees of the recursive sets. These applications to the pm degrees require no new complexity-theoretic results. The fact that the pm-degrees of the recursive sets have a decidable two-quantifier theory answers a question raised by Shore and Slaman in [21].
Beschreibung:Elektronische Reproduktion der Druck-Ausgabe 12. März 2014
Gesehen am 19.04.2023
Beschreibung:Online Resource
ISSN:1943-5886
DOI:10.2307/2275790