Non-invasive diagnosis of liver diseases by breath analysis using an optimized ion-molecule reaction-mass spectrometry approach: a pilot study

Breath composition is altered in liver diseases. We tested if ion-molecule-reaction mass spectrometry (IMR-MS) combined with a new statistical modality improves the diagnostic accuracy of breath analysis in liver diseases. We analysed 114 molecules in the breath of 126 individuals (healthy controls,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Millonig, Gunda (VerfasserIn) , Praun, Siegfried (VerfasserIn) , Netzer, Michael (VerfasserIn) , Baumgartner, Christian (VerfasserIn) , Dornauer, Albert (VerfasserIn) , Mueller, Sebastian (VerfasserIn) , Villinger, Johannes (VerfasserIn) , Vogel, Wolfgang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 Feb 2010
In: Biomarkers
Year: 2010, Jahrgang: 15, Heft: 4, Pages: 297-306
ISSN:1366-5804
DOI:10.3109/13547501003624512
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3109/13547501003624512
Volltext
Verfasserangaben:Gunda Millonig, Siegfried Praun, Michael Netzer, Christian Baumgartner, Albert Dornauer, Sebastian Mueller, Johannes Villinger & Wolfgang Vogel
Beschreibung
Zusammenfassung:Breath composition is altered in liver diseases. We tested if ion-molecule-reaction mass spectrometry (IMR-MS) combined with a new statistical modality improves the diagnostic accuracy of breath analysis in liver diseases. We analysed 114 molecules in the breath of 126 individuals (healthy controls, and patients with non-alcoholic and alcoholic fatty liver disease and liver cirrhosis) by IMR-MS. Characteristic exhalation patterns were identified for each group. Combining two to seven molecules in the new stacked feature ranking model reached a diagnostic accuracy (area under the curve) for individual liver diseases between 0.88 and 0.97. IMR-MS followed by sophisticated statistical analysis is a promising tool for liver diagnostics by breath analysis.
Beschreibung:Gesehen am 26.04.2023
Beschreibung:Online Resource
ISSN:1366-5804
DOI:10.3109/13547501003624512