Gröbner bases for polynomial systems with parameters

Gröbner bases are the computational method par excellence for studying polynomial systems. In the case of parametric polynomial systems one has to determine the reduced Gröbner basis in dependence of the values of the parameters. In this article, we present the algorithm GröbnerCover which has as...

Full description

Saved in:
Bibliographic Details
Main Authors: Montes, Antonio (Author) , Wibmer, Michael (Author)
Format: Article (Journal)
Language:English
Published: 22 June 2010
In: Journal of symbolic computation
Year: 2010, Volume: 45, Issue: 12, Pages: 1391-1425
ISSN:1095-855X
DOI:10.1016/j.jsc.2010.06.017
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jsc.2010.06.017
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0747717110000970
Get full text
Author Notes:Antonio Montes, Michael Wibmer
Description
Summary:Gröbner bases are the computational method par excellence for studying polynomial systems. In the case of parametric polynomial systems one has to determine the reduced Gröbner basis in dependence of the values of the parameters. In this article, we present the algorithm GröbnerCover which has as inputs a finite set of parametric polynomials, and outputs a finite partition of the parameter space into locally closed subsets together with polynomial data, from which the reduced Gröbner basis for a given parameter point can immediately be determined. The partition of the parameter space is intrinsic and particularly simple if the system is homogeneous.
Item Description:Gesehen am 03.05.2023
Physical Description:Online Resource
ISSN:1095-855X
DOI:10.1016/j.jsc.2010.06.017