Bounds for resilient functions and orthogonal arrays

Orthogonal arrays (OAs) are basic combinatorial structures, which appear under various disguises in cryptology and the theory of algorithms. Among their applications are universal hashing, authentication codes, resilient and correlation-immune functions, derandomization of algorithms, and perfect lo...

Full description

Saved in:
Bibliographic Details
Main Authors: Bierbrauer, Jürgen (Author) , Gopalakrishnan, K. (Author) , Stinson, Douglas R. (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 1994
In: Advances in Cryptology-CRYPTO ’94
Year: 1994, Pages: 247-256
DOI:10.1007/3-540-48658-5_24
Online Access:Verlag: https://dx.doi.org/10.1007/3-540-48658-5_24
Get full text
Author Notes:Jürgen Bierbrauer, K. Gopalakrishnan, D.R. Stinson
Description
Summary:Orthogonal arrays (OAs) are basic combinatorial structures, which appear under various disguises in cryptology and the theory of algorithms. Among their applications are universal hashing, authentication codes, resilient and correlation-immune functions, derandomization of algorithms, and perfect local randomizers. In this paper, we give new bounds on the size of orthogonal arrays using Delsarte’s linear programming method. Then we derive bounds on resilient functions and discuss when these bounds can be met.
Item Description:Elektronische Reproduktion der Druck-Ausgabe 1. Januar 2001
Gesehen am 06.06.2023
Physical Description:Online Resource
ISBN:9783540486589
DOI:10.1007/3-540-48658-5_24