Bounds for resilient functions and orthogonal arrays

Orthogonal arrays (OAs) are basic combinatorial structures, which appear under various disguises in cryptology and the theory of algorithms. Among their applications are universal hashing, authentication codes, resilient and correlation-immune functions, derandomization of algorithms, and perfect lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bierbrauer, Jürgen (VerfasserIn) , Gopalakrishnan, K. (VerfasserIn) , Stinson, Douglas R. (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 1994
In: Advances in Cryptology-CRYPTO ’94
Year: 1994, Pages: 247-256
DOI:10.1007/3-540-48658-5_24
Online-Zugang:Verlag: https://dx.doi.org/10.1007/3-540-48658-5_24
Volltext
Verfasserangaben:Jürgen Bierbrauer, K. Gopalakrishnan, D.R. Stinson
Beschreibung
Zusammenfassung:Orthogonal arrays (OAs) are basic combinatorial structures, which appear under various disguises in cryptology and the theory of algorithms. Among their applications are universal hashing, authentication codes, resilient and correlation-immune functions, derandomization of algorithms, and perfect local randomizers. In this paper, we give new bounds on the size of orthogonal arrays using Delsarte’s linear programming method. Then we derive bounds on resilient functions and discuss when these bounds can be met.
Beschreibung:Elektronische Reproduktion der Druck-Ausgabe 1. Januar 2001
Gesehen am 06.06.2023
Beschreibung:Online Resource
ISBN:9783540486589
DOI:10.1007/3-540-48658-5_24