Undecidability and 1-types in the recursively enumerable degrees

Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 (1993) 3-37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ambos-Spies, Klaus (Author) , Shore, Richard A. (Author)
Format: Article (Journal)
Language:English
Published: 1993
In: Annals of pure and applied logic
Year: 1993, Volume: 63, Issue: 1, Pages: 3-37
ISSN:1873-2461
DOI:10.1016/0168-0072(93)90206-S
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/0168-0072(93)90206-S
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/016800729390206S
Get full text
Author Notes:Klaus Ambos-Spies, Richard A. Shore
Description
Summary:Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 (1993) 3-37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any ideal of the r.e. degrees.
Item Description:Elektronische Reproduktion der Druck-Ausgabe 13. Mai 2002
Gesehen am 12.06.2023
Physical Description:Online Resource
ISSN:1873-2461
DOI:10.1016/0168-0072(93)90206-S