The theory of the recursively enumerable weak truth-table degrees is undecidable

We show that the partial order of -sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.

Saved in:
Bibliographic Details
Main Authors: Ambos-Spies, Klaus (Author) , Nies, André (Author) , Shore, Richard A. (Author)
Format: Article (Journal)
Language:English
Published: 1992
In: The journal of symbolic logic
Year: 1992, Volume: 57, Issue: 3, Pages: 864-874
ISSN:1943-5886
DOI:10.2307/2275436
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.2307/2275436
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/theory-of-the-recursively-enumerable-weak-truthtable-degrees-is-undecidable/9AF374E0E3D43BFEB21D61EED2B9D110
Get full text
Author Notes:Klaus Ambos-Spies, André Nies, Richard A. Shore
Description
Summary:We show that the partial order of -sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.
Item Description:Elektronische Reproduktion der Druck-Ausgabe 12. März 2014
Gesehen am 26.06.2023
Physical Description:Online Resource
ISSN:1943-5886
DOI:10.2307/2275436