Anomalous scaling at nonthermal fixed points of the sine-Gordon model

We extend the theory of nonthermal fixed points to the case of anomalously slow universal scaling dynamics according to the sine-Gordon model. This entails the derivation of a kinetic equation for the momentum occupancy of the scalar field from a nonperturbative two-particle irreducible effective ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heinen, Philipp (VerfasserIn) , Mikheev, Aleksandr N. (VerfasserIn) , Gasenzer, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 April 2023
In: Physical review
Year: 2023, Jahrgang: 107, Heft: 4, Pages: 1-21
ISSN:2469-9934
DOI:10.1103/PhysRevA.107.043303
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.107.043303
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.107.043303
Volltext
Verfasserangaben:Philipp Heinen, Aleksandr N. Mikheev, and Thomas Gasenzer
Beschreibung
Zusammenfassung:We extend the theory of nonthermal fixed points to the case of anomalously slow universal scaling dynamics according to the sine-Gordon model. This entails the derivation of a kinetic equation for the momentum occupancy of the scalar field from a nonperturbative two-particle irreducible effective action, which resums a series of closed loop chains akin to a large-N expansion at next-to-leading order. The resulting kinetic equation is analyzed for possible scaling solutions in space and time that are characterized by a set of universal scaling exponents and encode self-similar transport to low momenta. Assuming the momentum occupancy distribution to exhibit a scaling form we can determine the exponents by identifying the dominating contributions to the scattering integral and power counting. If the field exhibits strong variations across many wells of the cosine potential, the scattering integral is dominated by the scattering of many quasiparticles such that the momentum of each single participating mode is only weakly constrained. Remarkably, in this case, in contrast to wave turbulent cascades, which correspond to local transport in momentum space, our results suggest that kinetic scattering here is dominated by rather nonlocal processes corresponding to a spatial containment in position space. The corresponding universal correlation functions in momentum and position space corroborate this conclusion. Numerical simulations performed in accompanying work yield scaling properties close to the ones predicted here.
Beschreibung:Gesehen am 27.06.2023
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.107.043303