Timing control in regulatory networks by multisite protein modifications

Computational and experimental studies have yielded quantitative insights into the role for multisite phosphorylation, and other protein modifications, in cell function. This work has emphasized the creation of thresholds and switches for cellular decisions. To date, the dynamics of phosphorylation...

Full description

Saved in:
Bibliographic Details
Main Authors: Salazar, Carlos (Author) , Brümmer, Anneke (Author) , Alberghina, Lilia (Author) , Höfer, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 23 September 2010
In: Trends in cell biology
Year: 2010, Volume: 20, Issue: 11, Pages: 634-641
ISSN:1879-3088
DOI:10.1016/j.tcb.2010.08.012
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.tcb.2010.08.012
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0962892410001807
Get full text
Author Notes:Carlos Salazar, Anneke Brümmer, Lilia Alberghina and Thomas Höfer
Description
Summary:Computational and experimental studies have yielded quantitative insights into the role for multisite phosphorylation, and other protein modifications, in cell function. This work has emphasized the creation of thresholds and switches for cellular decisions. To date, the dynamics of phosphorylation events have been disregarded yet could be equally relevant for cell function. Here, we discuss theoretical predictions about the kinetic functions of multisite phosphorylation in regulatory networks and how these predictions relate to experimental findings. Using DNA replication as an example, we demonstrate that multisite phosphorylations can support coherent origin firing and robustness against rereplication. We suggest that multisite protein modifications provide a molecular mechanism to robustly time cellular events in the cell cycle, the circadian clock and signal transduction.
Item Description:Gesehen am 29.06.2023
Physical Description:Online Resource
ISSN:1879-3088
DOI:10.1016/j.tcb.2010.08.012