Zariski density of crystalline points

We show that crystalline points are Zariski dense in the deformation space of a representation of the absolute Galois group of a p-adic field. We also show that these points are dense in the subspace parameterizing deformations with the determinant equal to a fixed crystalline character. Our proof i...

Full description

Saved in:
Bibliographic Details
Main Authors: Böckle, Gebhard (Author) , Iyengar, Ashwin (Author) , Paškūnas, Vytautas (Author)
Format: Article (Journal)
Language:English
Published: March 20, 2023
In: Proceedings of the National Academy of Sciences of the United States of America
Year: 2023, Volume: 120, Issue: 13, Pages: 1-7
ISSN:1091-6490
DOI:10.1073/pnas.2221042120
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1073/pnas.2221042120
Verlag, lizenzpflichtig, Volltext: https://www.pnas.org/doi/10.1073/pnas.2221042120
Get full text
Author Notes:Gebhard Böckle, Ashwin Iyengar, and Vytautas Paškūnas
Description
Summary:We show that crystalline points are Zariski dense in the deformation space of a representation of the absolute Galois group of a p-adic field. We also show that these points are dense in the subspace parameterizing deformations with the determinant equal to a fixed crystalline character. Our proof is purely local and works for all p-adic fields and all residual Galois representations.
Item Description:Online veröffentlicht am 24. Januar 2023
Gesehen am 07.12.2023
Physical Description:Online Resource
ISSN:1091-6490
DOI:10.1073/pnas.2221042120