Zariski density of crystalline points
We show that crystalline points are Zariski dense in the deformation space of a representation of the absolute Galois group of a p-adic field. We also show that these points are dense in the subspace parameterizing deformations with the determinant equal to a fixed crystalline character. Our proof i...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
March 20, 2023
|
| In: |
Proceedings of the National Academy of Sciences of the United States of America
Year: 2023, Volume: 120, Issue: 13, Pages: 1-7 |
| ISSN: | 1091-6490 |
| DOI: | 10.1073/pnas.2221042120 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1073/pnas.2221042120 Verlag, lizenzpflichtig, Volltext: https://www.pnas.org/doi/10.1073/pnas.2221042120 |
| Author Notes: | Gebhard Böckle, Ashwin Iyengar, and Vytautas Paškūnas |
| Summary: | We show that crystalline points are Zariski dense in the deformation space of a representation of the absolute Galois group of a p-adic field. We also show that these points are dense in the subspace parameterizing deformations with the determinant equal to a fixed crystalline character. Our proof is purely local and works for all p-adic fields and all residual Galois representations. |
|---|---|
| Item Description: | Online veröffentlicht am 24. Januar 2023 Gesehen am 07.12.2023 |
| Physical Description: | Online Resource |
| ISSN: | 1091-6490 |
| DOI: | 10.1073/pnas.2221042120 |