Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis

Introduction Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramo...

Full description

Saved in:
Bibliographic Details
Main Authors: Kriegsmann, Mark (Author) , Kriegsmann, Katharina (Author) , Steinbuß, Georg (Author) , Zgorzelski, Christiane (Author) , Albrecht, Thomas (Author) , Heinrich, Stefan (Author) , Farkas, Stefan (Author) , Roth, Wilfried (Author) , Dang, Hien (Author) , Hausen, Anne (Author) , Gaida, Matthias (Author)
Format: Article (Journal)
Language:English
Published: July 2023
In: Clinical and translational medicine
Year: 2023, Volume: 13, Issue: 7, Pages: 1-14
ISSN:2001-1326
DOI:10.1002/ctm2.1299
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/ctm2.1299
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/ctm2.1299
Get full text
Author Notes:Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuss, Christiane Zgorzelski, Thomas Albrecht, Stefan Heinrich, Stefan Farkas, Wilfried Roth, Hien Dang, Anne Hausen, Matthias M. Gaida
Description
Summary:Introduction Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. Materials and methods In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non-neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. Results Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. Conclusions Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine.
Item Description:Online veröffentlicht: 6. July 2023
Gesehen am 20.07.2023
Physical Description:Online Resource
ISSN:2001-1326
DOI:10.1002/ctm2.1299