On classical tensor categories attached to the irreducible representations of the general linear supergroups GL(n|n)

We study the quotient of $$\mathcal {T}_n = Rep(GL(n|n))$$by the tensor ideal of negligible morphisms. If we consider the full subcategory $$\mathcal {T}_n^+$$of $$\mathcal {T}_n$$of indecomposable summands in iterated tensor products of irreducible representations up to parity shifts, its quotient...

Full description

Saved in:
Bibliographic Details
Main Authors: Heidersdorf, Thorsten (Author) , Weissauer, Rainer (Author)
Format: Article (Journal)
Language:English
Published: 20 April 2023
In: Selecta mathematica
Year: 2023, Volume: 29, Issue: 3, Pages: 1-101
ISSN:1420-9020
DOI:10.1007/s00029-023-00842-1
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00029-023-00842-1
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00029-023-00842-1
Get full text
Author Notes:Th. Heidersdorf, R. Weissauer
Description
Summary:We study the quotient of $$\mathcal {T}_n = Rep(GL(n|n))$$by the tensor ideal of negligible morphisms. If we consider the full subcategory $$\mathcal {T}_n^+$$of $$\mathcal {T}_n$$of indecomposable summands in iterated tensor products of irreducible representations up to parity shifts, its quotient is a semisimple tannakian category $$Rep(H_n)$$where $$H_n$$is a pro-reductive algebraic group. We determine the $$H_n$$and the groups $$H_{\lambda }$$corresponding to the tannakian subcategory in $$Rep(H_n)$$generated by an irreducible representation $$L(\lambda )$$. This gives structural information about the tensor category Rep(GL(n|n)), including the decomposition law of a tensor product of irreducible representations up to summands of superdimension zero. Some results are conditional on a hypothesis on 2-torsion in $$\pi _0(H_n)$$.
Item Description:Gesehen am 31.07.2023
Physical Description:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-023-00842-1