Collaborative training of medical artificial intelligence models with non-uniform labels

Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in whic...

Full description

Saved in:
Bibliographic Details
Main Authors: Tayebi Arasteh, Soroosh (Author) , Isfort, Peter (Author) , Saehn, Marwin (Author) , Mueller-Franzes, Gustav (Author) , Khader, Firas (Author) , Kather, Jakob Nikolas (Author) , Kuhl, Christiane (Author) , Nebelung, Sven (Author) , Truhn, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 13 April 2023
In: Scientific reports
Year: 2023, Volume: 13, Pages: 1-9
ISSN:2045-2322
DOI:10.1038/s41598-023-33303-y
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-33303-y
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-33303-y
Get full text
Author Notes:Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung & Daniel Truhn

MARC

LEADER 00000caa a2200000 c 4500
001 1854328131
003 DE-627
005 20240307063332.0
007 cr uuu---uuuuu
008 230804s2023 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-023-33303-y  |2 doi 
035 |a (DE-627)1854328131 
035 |a (DE-599)KXP1854328131 
035 |a (OCoLC)1425213400 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Tayebi Arasteh, Soroosh  |e VerfasserIn  |0 (DE-588)1298471109  |0 (DE-627)1854454927  |4 aut 
245 1 0 |a Collaborative training of medical artificial intelligence models with non-uniform labels  |c Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung & Daniel Truhn 
264 1 |c 13 April 2023 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.08.2023 
520 |a Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in which these data are labeled vary widely. For Instance, an institution might provide a dataset of chest radiographs containing labels denoting the presence of pneumonia, while another institution might have a focus on determining the presence of metastases in the lung. Training a single AI model utilizing all these data is not feasible with conventional federated learning (FL). This prompts us to propose an extension to the widespread FL process, namely flexible federated learning (FFL) for collaborative training on such data. Using 695,000 chest radiographs from five institutions from across the globe—each with differing labels—we demonstrate that having heterogeneously labeled datasets, FFL-based training leads to significant performance increase compared to conventional FL training, where only the uniformly annotated images are utilized. We believe that our proposed algorithm could accelerate the process of bringing collaborative training methods from research and simulation phase to the real-world applications in healthcare. 
650 4 |a Biomedical engineering 
650 4 |a Computer science 
700 1 |a Isfort, Peter  |e VerfasserIn  |4 aut 
700 1 |a Saehn, Marwin  |e VerfasserIn  |4 aut 
700 1 |a Mueller-Franzes, Gustav  |e VerfasserIn  |4 aut 
700 1 |a Khader, Firas  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Kuhl, Christiane  |e VerfasserIn  |4 aut 
700 1 |a Nebelung, Sven  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 13(2023), Artikel-ID 6046, Seite 1-9  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Collaborative training of medical artificial intelligence models with non-uniform labels 
773 1 8 |g volume:13  |g year:2023  |g elocationid:6046  |g pages:1-9  |g extent:9  |a Collaborative training of medical artificial intelligence models with non-uniform labels 
856 4 0 |u https://doi.org/10.1038/s41598-023-33303-y  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-023-33303-y  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230804 
993 |a Article 
994 |a 2023 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 5 
999 |a KXP-PPN1854328131  |e 4363103760 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1854328131"],"doi":["10.1038/s41598-023-33303-y"]},"title":[{"title_sort":"Collaborative training of medical artificial intelligence models with non-uniform labels","title":"Collaborative training of medical artificial intelligence models with non-uniform labels"}],"recId":"1854328131","note":["Gesehen am 04.08.2023"],"name":{"displayForm":["Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung & Daniel Truhn"]},"person":[{"family":"Tayebi Arasteh","roleDisplay":"VerfasserIn","given":"Soroosh","role":"aut","display":"Tayebi Arasteh, Soroosh"},{"family":"Isfort","roleDisplay":"VerfasserIn","display":"Isfort, Peter","role":"aut","given":"Peter"},{"roleDisplay":"VerfasserIn","family":"Saehn","role":"aut","display":"Saehn, Marwin","given":"Marwin"},{"given":"Gustav","display":"Mueller-Franzes, Gustav","role":"aut","family":"Mueller-Franzes","roleDisplay":"VerfasserIn"},{"display":"Khader, Firas","role":"aut","given":"Firas","roleDisplay":"VerfasserIn","family":"Khader"},{"given":"Jakob Nikolas","role":"aut","display":"Kather, Jakob Nikolas","family":"Kather","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Kuhl","given":"Christiane","role":"aut","display":"Kuhl, Christiane"},{"given":"Sven","display":"Nebelung, Sven","role":"aut","family":"Nebelung","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Truhn, Daniel","given":"Daniel","roleDisplay":"VerfasserIn","family":"Truhn"}],"physDesc":[{"extent":"9 S."}],"relHost":[{"part":{"year":"2023","extent":"9","pages":"1-9","text":"13(2023), Artikel-ID 6046, Seite 1-9","volume":"13"},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","dateIssuedDisp":"2011-","publisherPlace":"[London] ; London","dateIssuedKey":"2011"}],"title":[{"title":"Scientific reports","title_sort":"Scientific reports"}],"id":{"issn":["2045-2322"],"zdb":["2615211-3"],"eki":["663366712"]},"note":["Gesehen am 12.07.24"],"disp":"Collaborative training of medical artificial intelligence models with non-uniform labelsScientific reports","pubHistory":["1, article number 1 (2011)-"],"recId":"663366712"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"13 April 2023","dateIssuedKey":"2023"}]} 
SRT |a TAYEBIARASCOLLABORAT1320