Denoising diffusion probabilistic models for 3D medical image generation
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises th...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2023
|
| In: |
Scientific reports
Year: 2023, Volume: 13, Pages: 1-12 |
| ISSN: | 2045-2322 |
| DOI: | 10.1038/s41598-023-34341-2 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-34341-2 Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-34341-2 |
| Author Notes: | Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1854341960 | ||
| 003 | DE-627 | ||
| 005 | 20250113231602.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230804s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s41598-023-34341-2 |2 doi | |
| 035 | |a (DE-627)1854341960 | ||
| 035 | |a (DE-599)KXP1854341960 | ||
| 035 | |a (OCoLC)1425213185 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Khader, Firas |d 1996- |e VerfasserIn |0 (DE-588)1298294681 |0 (DE-627)1854342223 |4 aut | |
| 245 | 1 | 0 | |a Denoising diffusion probabilistic models for 3D medical image generation |c Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn |
| 264 | 1 | |c 2023 | |
| 300 | |b Illustrationen | ||
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Veröffentlicht: 05. Mai 2023 | ||
| 500 | |a Gesehen am 04.08.2023 | ||
| 520 | |a Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy-preserving artificial intelligence and can also be used to augment small datasets. We show that diffusion probabilistic models can synthesize high-quality medical data for magnetic resonance imaging (MRI) and computed tomography (CT). For quantitative evaluation, two radiologists rated the quality of the synthesized images regarding "realistic image appearance", "anatomical correctness", and "consistency between slices". Furthermore, we demonstrate that synthetic images can be used in self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (Dice scores, 0.91 [without synthetic data], 0.95 [with synthetic data]). | ||
| 650 | 4 | |a Computed tomography | |
| 650 | 4 | |a Computer science | |
| 650 | 4 | |a Magnetic resonance imaging | |
| 650 | 4 | |a Three-dimensional imaging | |
| 700 | 1 | |a Müller-Franzes, Gustav |e VerfasserIn |4 aut | |
| 700 | 1 | |a Tayebi Arasteh, Soroosh |e VerfasserIn |0 (DE-588)1298471109 |0 (DE-627)1854454927 |4 aut | |
| 700 | 1 | |a Han, Tianyu |e VerfasserIn |4 aut | |
| 700 | 1 | |a Haarburger, Christoph |e VerfasserIn |4 aut | |
| 700 | 1 | |a Schulze-Hagen, Maximilian |e VerfasserIn |4 aut | |
| 700 | 1 | |a Schad, Philipp |e VerfasserIn |4 aut | |
| 700 | 1 | |a Engelhardt, Sandy |d 1987- |e VerfasserIn |0 (DE-588)1122674465 |0 (DE-627)876003080 |0 (DE-576)481436049 |4 aut | |
| 700 | 1 | |a Baeßler, Bettina |e VerfasserIn |4 aut | |
| 700 | 1 | |a Foersch, Sebastian |e VerfasserIn |4 aut | |
| 700 | 1 | |8 1\p |a Stegmaier, Johannes |d 1985- |e VerfasserIn |0 (DE-588)1111064075 |0 (DE-627)865478260 |0 (DE-576)475912616 |4 aut | |
| 700 | 1 | |a Kuhl, Christiane |e VerfasserIn |4 aut | |
| 700 | 1 | |a Nebelung, Sven |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kather, Jakob Nikolas |d 1989- |e VerfasserIn |0 (DE-588)1064064914 |0 (DE-627)812897587 |0 (DE-576)423589091 |4 aut | |
| 700 | 1 | |a Truhn, Daniel |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Scientific reports |d [London] : Springer Nature, 2011 |g 13(2023), Artikel-ID 7303, Seite 1-12 |h Online-Ressource |w (DE-627)663366712 |w (DE-600)2615211-3 |w (DE-576)346641179 |x 2045-2322 |7 nnas |a Denoising diffusion probabilistic models for 3D medical image generation |
| 773 | 1 | 8 | |g volume:13 |g year:2023 |g elocationid:7303 |g pages:1-12 |g extent:12 |a Denoising diffusion probabilistic models for 3D medical image generation |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s41598-023-34341-2 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s41598-023-34341-2 |x Verlag |z kostenfrei |3 Volltext |
| 883 | |8 1\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20230804 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1064064914 |a Kather, Jakob Nikolas |m 1064064914:Kather, Jakob Nikolas |d 910000 |d 910100 |e 910000PK1064064914 |e 910100PK1064064914 |k 0/910000/ |k 1/910000/910100/ |p 14 | ||
| 998 | |g 1122674465 |a Engelhardt, Sandy |m 1122674465:Engelhardt, Sandy |d 910000 |d 910100 |e 910000PE1122674465 |e 910100PE1122674465 |k 0/910000/ |k 1/910000/910100/ |p 8 | ||
| 999 | |a KXP-PPN1854341960 |e 4363149574 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1854341960","physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"title":[{"title":"Denoising diffusion probabilistic models for 3D medical image generation","title_sort":"Denoising diffusion probabilistic models for 3D medical image generation"}],"note":["Veröffentlicht: 05. Mai 2023","Gesehen am 04.08.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 12.07.24"],"id":{"issn":["2045-2322"],"eki":["663366712"],"zdb":["2615211-3"]},"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"part":{"volume":"13","text":"13(2023), Artikel-ID 7303, Seite 1-12","extent":"12","pages":"1-12","year":"2023"},"origin":[{"dateIssuedDisp":"2011-","dateIssuedKey":"2011","publisherPlace":"[London] ; London","publisher":"Springer Nature ; Nature Publishing Group"}],"pubHistory":["1, article number 1 (2011)-"],"disp":"Denoising diffusion probabilistic models for 3D medical image generationScientific reports","physDesc":[{"extent":"Online-Ressource"}],"recId":"663366712"}],"person":[{"family":"Khader","role":"aut","given":"Firas","display":"Khader, Firas"},{"given":"Gustav","role":"aut","family":"Müller-Franzes","display":"Müller-Franzes, Gustav"},{"role":"aut","given":"Soroosh","family":"Tayebi Arasteh","display":"Tayebi Arasteh, Soroosh"},{"given":"Tianyu","role":"aut","family":"Han","display":"Han, Tianyu"},{"display":"Haarburger, Christoph","family":"Haarburger","role":"aut","given":"Christoph"},{"display":"Schulze-Hagen, Maximilian","family":"Schulze-Hagen","given":"Maximilian","role":"aut"},{"family":"Schad","role":"aut","given":"Philipp","display":"Schad, Philipp"},{"family":"Engelhardt","role":"aut","given":"Sandy","display":"Engelhardt, Sandy"},{"given":"Bettina","role":"aut","family":"Baeßler","display":"Baeßler, Bettina"},{"display":"Foersch, Sebastian","family":"Foersch","given":"Sebastian","role":"aut"},{"display":"Stegmaier, Johannes","given":"Johannes","role":"aut","family":"Stegmaier"},{"display":"Kuhl, Christiane","given":"Christiane","role":"aut","family":"Kuhl"},{"family":"Nebelung","given":"Sven","role":"aut","display":"Nebelung, Sven"},{"given":"Jakob Nikolas","role":"aut","family":"Kather","display":"Kather, Jakob Nikolas"},{"role":"aut","given":"Daniel","family":"Truhn","display":"Truhn, Daniel"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"id":{"eki":["1854341960"],"doi":["10.1038/s41598-023-34341-2"]},"name":{"displayForm":["Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn"]}} | ||
| SRT | |a KHADERFIRADENOISINGD2023 | ||