Denoising diffusion probabilistic models for 3D medical image generation

Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises th...

Full description

Saved in:
Bibliographic Details
Main Authors: Khader, Firas (Author) , Müller-Franzes, Gustav (Author) , Tayebi Arasteh, Soroosh (Author) , Han, Tianyu (Author) , Haarburger, Christoph (Author) , Schulze-Hagen, Maximilian (Author) , Schad, Philipp (Author) , Engelhardt, Sandy (Author) , Baeßler, Bettina (Author) , Foersch, Sebastian (Author) , Stegmaier, Johannes (Author) , Kuhl, Christiane (Author) , Nebelung, Sven (Author) , Kather, Jakob Nikolas (Author) , Truhn, Daniel (Author)
Format: Article (Journal)
Language:English
Published: 2023
In: Scientific reports
Year: 2023, Volume: 13, Pages: 1-12
ISSN:2045-2322
DOI:10.1038/s41598-023-34341-2
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-34341-2
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-34341-2
Get full text
Author Notes:Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn

MARC

LEADER 00000caa a2200000 c 4500
001 1854341960
003 DE-627
005 20250113231602.0
007 cr uuu---uuuuu
008 230804s2023 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-023-34341-2  |2 doi 
035 |a (DE-627)1854341960 
035 |a (DE-599)KXP1854341960 
035 |a (OCoLC)1425213185 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Khader, Firas  |d 1996-  |e VerfasserIn  |0 (DE-588)1298294681  |0 (DE-627)1854342223  |4 aut 
245 1 0 |a Denoising diffusion probabilistic models for 3D medical image generation  |c Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 05. Mai 2023 
500 |a Gesehen am 04.08.2023 
520 |a Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy-preserving artificial intelligence and can also be used to augment small datasets. We show that diffusion probabilistic models can synthesize high-quality medical data for magnetic resonance imaging (MRI) and computed tomography (CT). For quantitative evaluation, two radiologists rated the quality of the synthesized images regarding "realistic image appearance", "anatomical correctness", and "consistency between slices". Furthermore, we demonstrate that synthetic images can be used in self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (Dice scores, 0.91 [without synthetic data], 0.95 [with synthetic data]). 
650 4 |a Computed tomography 
650 4 |a Computer science 
650 4 |a Magnetic resonance imaging 
650 4 |a Three-dimensional imaging 
700 1 |a Müller-Franzes, Gustav  |e VerfasserIn  |4 aut 
700 1 |a Tayebi Arasteh, Soroosh  |e VerfasserIn  |0 (DE-588)1298471109  |0 (DE-627)1854454927  |4 aut 
700 1 |a Han, Tianyu  |e VerfasserIn  |4 aut 
700 1 |a Haarburger, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Schulze-Hagen, Maximilian  |e VerfasserIn  |4 aut 
700 1 |a Schad, Philipp  |e VerfasserIn  |4 aut 
700 1 |a Engelhardt, Sandy  |d 1987-  |e VerfasserIn  |0 (DE-588)1122674465  |0 (DE-627)876003080  |0 (DE-576)481436049  |4 aut 
700 1 |a Baeßler, Bettina  |e VerfasserIn  |4 aut 
700 1 |a Foersch, Sebastian  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Stegmaier, Johannes  |d 1985-  |e VerfasserIn  |0 (DE-588)1111064075  |0 (DE-627)865478260  |0 (DE-576)475912616  |4 aut 
700 1 |a Kuhl, Christiane  |e VerfasserIn  |4 aut 
700 1 |a Nebelung, Sven  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 13(2023), Artikel-ID 7303, Seite 1-12  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Denoising diffusion probabilistic models for 3D medical image generation 
773 1 8 |g volume:13  |g year:2023  |g elocationid:7303  |g pages:1-12  |g extent:12  |a Denoising diffusion probabilistic models for 3D medical image generation 
856 4 0 |u https://doi.org/10.1038/s41598-023-34341-2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-023-34341-2  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20230804 
993 |a Article 
994 |a 2023 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 14 
998 |g 1122674465  |a Engelhardt, Sandy  |m 1122674465:Engelhardt, Sandy  |d 910000  |d 910100  |e 910000PE1122674465  |e 910100PE1122674465  |k 0/910000/  |k 1/910000/910100/  |p 8 
999 |a KXP-PPN1854341960  |e 4363149574 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1854341960","physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"title":[{"title":"Denoising diffusion probabilistic models for 3D medical image generation","title_sort":"Denoising diffusion probabilistic models for 3D medical image generation"}],"note":["Veröffentlicht: 05. Mai 2023","Gesehen am 04.08.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 12.07.24"],"id":{"issn":["2045-2322"],"eki":["663366712"],"zdb":["2615211-3"]},"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"part":{"volume":"13","text":"13(2023), Artikel-ID 7303, Seite 1-12","extent":"12","pages":"1-12","year":"2023"},"origin":[{"dateIssuedDisp":"2011-","dateIssuedKey":"2011","publisherPlace":"[London] ; London","publisher":"Springer Nature ; Nature Publishing Group"}],"pubHistory":["1, article number 1 (2011)-"],"disp":"Denoising diffusion probabilistic models for 3D medical image generationScientific reports","physDesc":[{"extent":"Online-Ressource"}],"recId":"663366712"}],"person":[{"family":"Khader","role":"aut","given":"Firas","display":"Khader, Firas"},{"given":"Gustav","role":"aut","family":"Müller-Franzes","display":"Müller-Franzes, Gustav"},{"role":"aut","given":"Soroosh","family":"Tayebi Arasteh","display":"Tayebi Arasteh, Soroosh"},{"given":"Tianyu","role":"aut","family":"Han","display":"Han, Tianyu"},{"display":"Haarburger, Christoph","family":"Haarburger","role":"aut","given":"Christoph"},{"display":"Schulze-Hagen, Maximilian","family":"Schulze-Hagen","given":"Maximilian","role":"aut"},{"family":"Schad","role":"aut","given":"Philipp","display":"Schad, Philipp"},{"family":"Engelhardt","role":"aut","given":"Sandy","display":"Engelhardt, Sandy"},{"given":"Bettina","role":"aut","family":"Baeßler","display":"Baeßler, Bettina"},{"display":"Foersch, Sebastian","family":"Foersch","given":"Sebastian","role":"aut"},{"display":"Stegmaier, Johannes","given":"Johannes","role":"aut","family":"Stegmaier"},{"display":"Kuhl, Christiane","given":"Christiane","role":"aut","family":"Kuhl"},{"family":"Nebelung","given":"Sven","role":"aut","display":"Nebelung, Sven"},{"given":"Jakob Nikolas","role":"aut","family":"Kather","display":"Kather, Jakob Nikolas"},{"role":"aut","given":"Daniel","family":"Truhn","display":"Truhn, Daniel"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}],"id":{"eki":["1854341960"],"doi":["10.1038/s41598-023-34341-2"]},"name":{"displayForm":["Firas Khader, Gustav Müller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baeßler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather & Daniel Truhn"]}} 
SRT |a KHADERFIRADENOISINGD2023