Efficient intramolecular singlet fission in spiro-linked heterodimers

We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their...

Full description

Saved in:
Bibliographic Details
Main Authors: Kefer, Oskar (Author) , Ahrens, Lukas (Author) , Han, Jie (Author) , Wollscheid, Nikolaus (Author) , Misselwitz, Erik (Author) , Rominger, Frank (Author) , Freudenberg, Jan (Author) , Dreuw, Andreas (Author) , Bunz, Uwe H. F. (Author) , Buckup, Tiago (Author)
Format: Article (Journal)
Language:English
Published: 16 August 2023
In: Journal of the American Chemical Society
Year: 2023, Volume: 145, Issue: 32, Pages: 17965-17974
ISSN:1520-5126
DOI:10.1021/jacs.3c05518
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/jacs.3c05518
Verlag, lizenzpflichtig, Volltext: https://pubs.acs.org/doi/10.1021/jacs.3c05518
Get full text
Author Notes:Oskar Kefer, Lukas Ahrens, Jie Han, Nikolaus Wollscheid, Erik Misselwitz, Frank Rominger, Jan Freudenberg, Andreas Dreuw, Uwe H.F. Bunz, and Tiago Buckup
Description
Summary:We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Item Description:Online veröffentlicht: 3 August 2023
Gesehen am 04.08.2023
Physical Description:Online Resource
ISSN:1520-5126
DOI:10.1021/jacs.3c05518