Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study

Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Niehues, Jan Moritz (VerfasserIn) , Quirke, Philip (VerfasserIn) , West, Nicholas P. (VerfasserIn) , Grabsch, Heike I. (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Schirris, Yoni (VerfasserIn) , Veldhuizen, Gregory P. (VerfasserIn) , Hutchins, Gordon G. A. (VerfasserIn) , Richman, Susan D. (VerfasserIn) , Foersch, Sebastian (VerfasserIn) , Brinker, Titus Josef (VerfasserIn) , Fukuoka, Junya (VerfasserIn) , Bychkov, Andrey (VerfasserIn) , Uegami, Wataru (VerfasserIn) , Truhn, Daniel (VerfasserIn) , Brenner, Hermann (VerfasserIn) , Brobeil, Alexander (VerfasserIn) , Hoffmeister, Michael (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 April 2023
In: Cell reports. Medicine
Year: 2023, Jahrgang: 4, Heft: 4, Pages: 1-16
ISSN:2666-3791
DOI:10.1016/j.xcrm.2023.100980
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.xcrm.2023.100980
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2666379123000861
Volltext
Verfasserangaben:Jan Moritz Niehues, Philip Quirke, Nicholas P. West, Heike I. Grabsch, Marko van Treeck, Yoni Schirris, Gregory P. Veldhuizen, Gordon G.A. Hutchins, Susan D. Richman, Sebastian Foersch, Titus J. Brinker, Junya Fukuoka, Andrey Bychkov, Wataru Uegami, Daniel Truhn, Hermann Brenner, Alexander Brobeil, Michael Hoffmeister, and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1854989456
003 DE-627
005 20240307062431.0
007 cr uuu---uuuuu
008 230809s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.xcrm.2023.100980  |2 doi 
035 |a (DE-627)1854989456 
035 |a (DE-599)KXP1854989456 
035 |a (OCoLC)1425213032 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Niehues, Jan Moritz  |e VerfasserIn  |0 (DE-588)1210223511  |0 (DE-627)1698297114  |4 aut 
245 1 0 |a Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning  |b a retrospective multi-centric study  |c Jan Moritz Niehues, Philip Quirke, Nicholas P. West, Heike I. Grabsch, Marko van Treeck, Yoni Schirris, Gregory P. Veldhuizen, Gordon G.A. Hutchins, Susan D. Richman, Sebastian Foersch, Titus J. Brinker, Junya Fukuoka, Andrey Bychkov, Wataru Uegami, Daniel Truhn, Hermann Brenner, Alexander Brobeil, Michael Hoffmeister, and Jakob Nikolas Kather 
264 1 |c 18 April 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a  Online verfügbar 22 March 2023, Version des Artikels 18 April 2023 
500 |a Gesehen am 09.08.2023 
520 |a Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient. 
650 4 |a artificial intelligence 
650 4 |a attention heatmaps 
650 4 |a attention-based multiple-instance learning 
650 4 |a biomarker 
650 4 |a colorectal cancer 
650 4 |a computational pathology 
650 4 |a multi-input models 
650 4 |a oncogenic mutation 
650 4 |a self-supervised learning 
700 1 |a Quirke, Philip  |e VerfasserIn  |4 aut 
700 1 |a West, Nicholas P.  |e VerfasserIn  |4 aut 
700 1 |a Grabsch, Heike I.  |e VerfasserIn  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Schirris, Yoni  |e VerfasserIn  |4 aut 
700 1 |a Veldhuizen, Gregory P.  |e VerfasserIn  |4 aut 
700 1 |a Hutchins, Gordon G. A.  |e VerfasserIn  |4 aut 
700 1 |a Richman, Susan D.  |e VerfasserIn  |4 aut 
700 1 |a Foersch, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
700 1 |a Fukuoka, Junya  |e VerfasserIn  |4 aut 
700 1 |a Bychkov, Andrey  |e VerfasserIn  |4 aut 
700 1 |a Uegami, Wataru  |e VerfasserIn  |4 aut 
700 1 |a Truhn, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Brobeil, Alexander  |e VerfasserIn  |0 (DE-588)108137795X  |0 (DE-627)846032406  |0 (DE-576)454349661  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Cell reports. Medicine  |d Cambridge, MA : Cell Press, 2020  |g 4(2023), 4 vom: Apr., Artikel-ID 100980, Seite 1-16  |h Online-Ressource  |w (DE-627)1696877792  |w (DE-600)3019420-9  |x 2666-3791  |7 nnas  |a Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning a retrospective multi-centric study 
773 1 8 |g volume:4  |g year:2023  |g number:4  |g month:04  |g elocationid:100980  |g pages:1-16  |g extent:16  |a Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning a retrospective multi-centric study 
856 4 0 |u https://doi.org/10.1016/j.xcrm.2023.100980  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2666379123000861  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230809 
993 |a Article 
994 |a 2023 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 19  |y j 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 18 
998 |g 108137795X  |a Brobeil, Alexander  |m 108137795X:Brobeil, Alexander  |d 910000  |d 912000  |e 910000PB108137795X  |e 912000PB108137795X  |k 0/910000/  |k 1/910000/912000/  |p 17 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 16 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 11 
999 |a KXP-PPN1854989456  |e 4364123706 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Jan Moritz Niehues, Philip Quirke, Nicholas P. West, Heike I. Grabsch, Marko van Treeck, Yoni Schirris, Gregory P. Veldhuizen, Gordon G.A. Hutchins, Susan D. Richman, Sebastian Foersch, Titus J. Brinker, Junya Fukuoka, Andrey Bychkov, Wataru Uegami, Daniel Truhn, Hermann Brenner, Alexander Brobeil, Michael Hoffmeister, and Jakob Nikolas Kather"]},"id":{"doi":["10.1016/j.xcrm.2023.100980"],"eki":["1854989456"]},"physDesc":[{"extent":"16 S."}],"recId":"1854989456","person":[{"family":"Niehues","role":"aut","given":"Jan Moritz","display":"Niehues, Jan Moritz"},{"display":"Quirke, Philip","family":"Quirke","role":"aut","given":"Philip"},{"role":"aut","given":"Nicholas P.","family":"West","display":"West, Nicholas P."},{"family":"Grabsch","given":"Heike I.","role":"aut","display":"Grabsch, Heike I."},{"display":"van Treeck, Marko","family":"van Treeck","given":"Marko","role":"aut"},{"given":"Yoni","role":"aut","family":"Schirris","display":"Schirris, Yoni"},{"family":"Veldhuizen","role":"aut","given":"Gregory P.","display":"Veldhuizen, Gregory P."},{"display":"Hutchins, Gordon G. A.","given":"Gordon G. A.","role":"aut","family":"Hutchins"},{"family":"Richman","role":"aut","given":"Susan D.","display":"Richman, Susan D."},{"display":"Foersch, Sebastian","role":"aut","given":"Sebastian","family":"Foersch"},{"display":"Brinker, Titus Josef","given":"Titus Josef","role":"aut","family":"Brinker"},{"display":"Fukuoka, Junya","role":"aut","given":"Junya","family":"Fukuoka"},{"display":"Bychkov, Andrey","role":"aut","given":"Andrey","family":"Bychkov"},{"family":"Uegami","role":"aut","given":"Wataru","display":"Uegami, Wataru"},{"display":"Truhn, Daniel","role":"aut","given":"Daniel","family":"Truhn"},{"display":"Brenner, Hermann","family":"Brenner","role":"aut","given":"Hermann"},{"role":"aut","given":"Alexander","family":"Brobeil","display":"Brobeil, Alexander"},{"family":"Hoffmeister","given":"Michael","role":"aut","display":"Hoffmeister, Michael"},{"display":"Kather, Jakob Nikolas","role":"aut","given":"Jakob Nikolas","family":"Kather"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"1696877792","disp":"Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning a retrospective multi-centric studyCell reports. Medicine","pubHistory":["Volume 1, issue 1 (2020)-"],"origin":[{"publisherPlace":"Cambridge, MA ; Maryland Heights, MO","dateIssuedDisp":"[2020]-","publisher":"Cell Press ; Elsevier"}],"note":["Gesehen am 29. April 2020"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"partname":"Medicine","title_sort":"Cell reports","title":"Cell reports"}],"part":{"pages":"1-16","text":"4(2023), 4 vom: Apr., Artikel-ID 100980, Seite 1-16","extent":"16","issue":"4","year":"2023","volume":"4"},"id":{"eki":["1696877792"],"issn":["2666-3791"],"zdb":["3019420-9"]}}],"origin":[{"dateIssuedDisp":"18 April 2023","dateIssuedKey":"2023"}],"note":[" Online verfügbar 22 March 2023, Version des Artikels 18 April 2023","Gesehen am 09.08.2023"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"subtitle":"a retrospective multi-centric study","title_sort":"Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning","title":"Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning"}]} 
SRT |a NIEHUESJANGENERALIZA1820