General mapping for bosonic and fermionic operators in Fock space

In this article, we provide an alternative and general way to construct the result of the action of any particle-conserving bosonic or fermionic operator represented in second quantized form on a state vector, without resorting to the matrix representation of operators or even its elements. This app...

Full description

Saved in:
Bibliographic Details
Main Authors: Streltsov, Alexej Iwanowitsch (Author) , Alon, Ofir E. (Author) , Cederbaum, Lorenz S. (Author)
Format: Article (Journal)
Language:English
Published: 26 February 2010
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2010, Volume: 81, Issue: 2, Pages: 1-12
ISSN:1094-1622
DOI:10.1103/PhysRevA.81.022124
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.81.022124
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.81.022124
Get full text
Author Notes:Alexej I. Streltsov, Ofir E. Alon, and Lorenz S. Cederbaum
Description
Summary:In this article, we provide an alternative and general way to construct the result of the action of any particle-conserving bosonic or fermionic operator represented in second quantized form on a state vector, without resorting to the matrix representation of operators or even its elements. This approach is based on our proposal to compactly enumerate the configurations (i.e., determinants for fermions, permanents for bosons) that are the elements of the state vector. This extremely simplifies the calculation of the action of an operator on a state vector. The computations of statical properties and the evolution dynamics of a system become much more efficient, and applications to systems made of more particles become feasible. Explicit formulations are given for spin-polarized fermionic systems and spinless bosonic systems, as well as to general (two-component) fermionic systems, two-component bosonic systems, and mixtures thereof.
Item Description:Gesehen am 01.09.2023
Physical Description:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.81.022124