Magnetocrystalline anisotropy energy of a transition metal monolayer: a non-perturbative theory

The magnetocrystalline anisotropy energy Eanis for a monolayer of Fe and Ni is determined using a fully convergent tight-binding calculation including s-d hybridization. The spin-orbit interaction λso is treated non-perturbatively. Remarkably, we find Eanis ∝ λso2 and important contributions to Eani...

Full description

Saved in:
Bibliographic Details
Main Authors: Moos, Thorsten (Author) , Hübner, Wolfgang (Author) , Bennemann, Karl-Heinz (Author)
Format: Article (Journal)
Language:English
Published: 1996
In: Solid state communications
Year: 1996, Volume: 98, Issue: 7, Pages: 639-643
ISSN:0038-1098
Online Access: Get full text
Author Notes:T.H Moos, W. Hübner and K.H Bennemann
Description
Summary:The magnetocrystalline anisotropy energy Eanis for a monolayer of Fe and Ni is determined using a fully convergent tight-binding calculation including s-d hybridization. The spin-orbit interaction λso is treated non-perturbatively. Remarkably, we find Eanis ∝ λso2 and important contributions to Eanis due to the lifting of degeneracies near the Fermilevel. This is supported by the calculated decrease of the anisotropy energy with increasing temperature on a scale of several hundred K. Our results clarify the present debate on the origin of Eanis.
Item Description:Gesehen am 12.09.2023
ISSN:0038-1098