A note on the non-commutative laplace-varadhan integral lemma

We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables X and Y that do not necessarily commute. By slightly extending a recent paper by Hia...

Full description

Saved in:
Bibliographic Details
Main Authors: De Roeck, Wojciech (Author) , Maes, Christian (Author) , Netočný, Karel (Author) , Rey-Bellet, Luc (Author)
Format: Article (Journal)
Language:English
Published: 2010
In: Reviews in mathematical physics
Year: 2010, Volume: 22, Issue: 7, Pages: 839-858
ISSN:1793-6659
DOI:10.1142/S0129055X10004089
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0129055X10004089
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S0129055X10004089
Get full text
Author Notes:W. De Roeck, Christian Maes, Karel Netočný, Luc Rey-Bellet
Description
Summary:We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables X and Y that do not necessarily commute. By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [10], we prove in general that the free energy is given by a variational principle over the range of the operators X and Y. As in [10], the result is a non-commutative extension of the Laplace-Varadhan asymptotic formula.
Item Description:Gesehen am 15.09.2023
Physical Description:Online Resource
ISSN:1793-6659
DOI:10.1142/S0129055X10004089