Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized com...

Full description

Saved in:
Bibliographic Details
Main Authors: Tretter, Celina (Author) , Uhrig, Sebastian (Author) , Ochsenreither, Sebastian (Author) , Weichert, Wilko (Author) , Fröhling, Stefan (Author) , Rad, Roland (Author) , Hiltensperger, Michael (Author) , Krackhardt, Angela M. (Author)
Format: Article (Journal)
Language:English
Published: 02 August 2023
In: Nature Communications
Year: 2023, Volume: 14, Pages: 1-22
ISSN:2041-1723
DOI:10.1038/s41467-023-39570-7
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-023-39570-7
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-023-39570-7
Get full text
Author Notes:Celina Tretter, Niklas de Andrade Krätzig, Matteo Pecoraro, Sebastian Lange, Philipp Seifert, Clara von Frankenberg, Johannes Untch, Gabriela Zuleger, Mathias Wilhelm, Daniel P. Zolg, Florian S. Dreyer, Eva Bräunlein, Thomas Engleitner, Sebastian Uhrig, Melanie Boxberg, Katja Steiger, Julia Slotta-Huspenina, Sebastian Ochsenreither, Nikolas von Bubnoff, Sebastian Bauer, Melanie Boerries, Philipp J. Jost, Kristina Schenck, Iska Dresing, Florian Bassermann, Helmut Friess, Daniel Reim, Konrad Grützmann, Katrin Pfütze, Barbara Klink, Evelin Schröck, Bernhard Haller, Bernhard Kuster, Matthias Mann, Wilko Weichert, Stefan Fröhling, Roland Rad, Michael Hiltensperger & Angela M. Krackhardt
Description
Summary:Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. ...
Item Description:Gesehen am 16.11.2023
Physical Description:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-023-39570-7