A temperature-tolerant CRISPR base editor mediates highly efficient and precise gene editing in Drosophila

CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Doll, Roman M. (Author) , Boutros, Michael (Author) , Port, Fillip (Author)
Format: Article (Journal)
Language:English
Published: 30 Aug 2023
In: Science advances
Year: 2023, Volume: 9, Issue: 35, Pages: 1-16
ISSN:2375-2548
DOI:10.1126/sciadv.adj1568
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1126/sciadv.adj1568
Verlag, kostenfrei, Volltext: https://www.science.org/doi/10.1126/sciadv.adj1568
Get full text
Author Notes:Roman M. Doll, Michael Boutros, Fillip Port
Description
Summary:CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We find that a variant of the widely used APOBEC1 deaminase has attenuated activity at 18° to 29°C and shows considerable dose-dependent toxicity. In contrast, the temperature-tolerant evoCDA1 domain mediates editing of typically more than 90% of alleles and is substantially better tolerated. Furthermore, formation of undesired mutations is exceptionally rare in Drosophila compared to other species. The predictable editing outcome, high efficiency, and product purity enables near homogeneous induction of STOP codons or alleles encoding protein variants in vivo. Last, we demonstrate how optimized expression enables conditional base editing in marked cell populations. This work substantially facilitates creation of precise alleles in Drosophila and provides key design parameters for developing efficient base editing systems in other ectothermic species.
Item Description:Gesehen am 27.10.2023
Physical Description:Online Resource
ISSN:2375-2548
DOI:10.1126/sciadv.adj1568