Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of ge...

Full description

Saved in:
Bibliographic Details
Main Authors: Saldanha, Oliver Lester (Author) , Löffler, Chiara (Author) , Niehues, Jan Moritz (Author) , van Treeck, Marko (Author) , Seraphin, Tobias Paul (Author) , Hewitt, Katherine Jane (Author) , Cifci, Didem (Author) , Veldhuizen, Gregory Patrick (Author) , Ramesh, Siddhi (Author) , Pearson, Alexander T. (Author) , Kather, Jakob Nikolas (Author)
Format: Article (Journal)
Language:English
Published: 28 March 2023
In: npj precision oncology
Year: 2023, Volume: 7, Pages: 1-5
ISSN:2397-768X
DOI:10.1038/s41698-023-00365-0
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1038/s41698-023-00365-0
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41698-023-00365-0
Get full text
Author Notes:Oliver Lester Saldanha, Chiara M. L. Loeffler, Jan Moritz Niehues, Marko van Treeck, Tobias P. Seraphin, Katherine Jane Hewitt, Didem Cifci, Gregory Patrick Veldhuizen, Siddhi Ramesh, Alexander T. Pearson and Jakob Nikolas Kather
Description
Summary:The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.
Item Description:Gesehen am 6.11.2023
Physical Description:Online Resource
ISSN:2397-768X
DOI:10.1038/s41698-023-00365-0