Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network

Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hong, Jia-Sheng (VerfasserIn) , Hermann, Ingo (VerfasserIn) , Zöllner, Frank G. (VerfasserIn) , Schad, Lothar R. (VerfasserIn) , Wang, Shuu-Jiun (VerfasserIn) , Lee, Wei-Kai (VerfasserIn) , Chen, Yung-Lin (VerfasserIn) , Chang, Yu (VerfasserIn) , Wu, Yu-Te (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 February 2022
In: Sensors
Year: 2022, Jahrgang: 22, Heft: 3, Pages: 1-17
ISSN:1424-8220
DOI:10.3390/s22031260
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/s22031260
Verlag, kostenfrei, Volltext: https://www.mdpi.com/1424-8220/22/3/1260
Volltext
Verfasserangaben:Jia-Sheng Hong, Ingo Hermann, Frank Gerrit Zöllner, Lothar R. Schad, Shuu-Jiun Wang, Wei-Kai Lee, Yung-Lin Chen, Yu Chang and Yu-Te Wu

MARC

LEADER 00000caa a2200000 c 4500
001 1870252071
003 DE-627
005 20240307081758.0
007 cr uuu---uuuuu
008 231114s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/s22031260  |2 doi 
035 |a (DE-627)1870252071 
035 |a (DE-599)KXP1870252071 
035 |a (OCoLC)1425216486 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Hong, Jia-Sheng  |e VerfasserIn  |0 (DE-588)1056126647  |0 (DE-627)794418619  |0 (DE-576)412765780  |4 aut 
245 1 0 |a Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network  |c Jia-Sheng Hong, Ingo Hermann, Frank Gerrit Zöllner, Lothar R. Schad, Shuu-Jiun Wang, Wei-Kai Lee, Yung-Lin Chen, Yu Chang and Yu-Te Wu 
264 1 |c 7 February 2022 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.11.2023 
520 |a Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning model. The proposed approach uses a two-stage model that first eliminates noise and then regresses the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and compared with the prediction results of the two-stage model. MRF-EPI scans were collected from 32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising model. For prediction with scans in the testing dataset, the mean absolute percentage errors between the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and 2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries. 
650 4 |a denoising convolutional neural network 
650 4 |a echo-planar imaging 
650 4 |a feature pyramid network 
650 4 |a magnetic resonance fingerprinting 
650 4 |a self-attention 
650 4 |a T1 and T2* relaxation times 
700 1 |a Hermann, Ingo  |d 1995-  |e VerfasserIn  |0 (DE-588)1225371678  |0 (DE-627)1744972109  |4 aut 
700 1 |a Zöllner, Frank G.  |d 1976-  |e VerfasserIn  |0 (DE-588)129580015  |0 (DE-627)473357054  |0 (DE-576)297732587  |4 aut 
700 1 |a Schad, Lothar R.  |d 1956-  |e VerfasserIn  |0 (DE-588)1028817630  |0 (DE-627)731640241  |0 (DE-576)376271221  |4 aut 
700 1 |a Wang, Shuu-Jiun  |e VerfasserIn  |4 aut 
700 1 |a Lee, Wei-Kai  |e VerfasserIn  |4 aut 
700 1 |a Chen, Yung-Lin  |e VerfasserIn  |4 aut 
700 1 |a Chang, Yu  |e VerfasserIn  |4 aut 
700 1 |a Wu, Yu-Te  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Sensors  |d Basel : MDPI, 2001  |g 22(2022), 3, Artikel-ID 1260, Seite 1-17  |h Online-Ressource  |w (DE-627)331640910  |w (DE-600)2052857-7  |w (DE-576)281205191  |x 1424-8220  |7 nnas  |a Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network 
773 1 8 |g volume:22  |g year:2022  |g number:3  |g elocationid:1260  |g pages:1-17  |g extent:17  |a Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network 
856 4 0 |u https://doi.org/10.3390/s22031260  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/1424-8220/22/3/1260  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20231114 
993 |a Article 
994 |a 2022 
998 |g 1028817630  |a Schad, Lothar R.  |m 1028817630:Schad, Lothar R.  |d 60000  |d 65200  |e 60000PS1028817630  |e 65200PS1028817630  |k 0/60000/  |k 1/60000/65200/  |p 4 
998 |g 129580015  |a Zöllner, Frank G.  |m 129580015:Zöllner, Frank G.  |d 60000  |d 65200  |e 60000PZ129580015  |e 65200PZ129580015  |k 0/60000/  |k 1/60000/65200/  |p 3 
998 |g 1225371678  |a Hermann, Ingo  |m 1225371678:Hermann, Ingo  |d 60000  |d 65200  |e 60000PH1225371678  |e 65200PH1225371678  |k 0/60000/  |k 1/60000/65200/  |p 2 
999 |a KXP-PPN1870252071  |e 4406601260 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Hong","display":"Hong, Jia-Sheng","given":"Jia-Sheng","role":"aut"},{"role":"aut","given":"Ingo","family":"Hermann","display":"Hermann, Ingo"},{"family":"Zöllner","display":"Zöllner, Frank G.","role":"aut","given":"Frank G."},{"display":"Schad, Lothar R.","family":"Schad","role":"aut","given":"Lothar R."},{"given":"Shuu-Jiun","role":"aut","family":"Wang","display":"Wang, Shuu-Jiun"},{"family":"Lee","display":"Lee, Wei-Kai","given":"Wei-Kai","role":"aut"},{"family":"Chen","display":"Chen, Yung-Lin","role":"aut","given":"Yung-Lin"},{"given":"Yu","role":"aut","family":"Chang","display":"Chang, Yu"},{"given":"Yu-Te","role":"aut","display":"Wu, Yu-Te","family":"Wu"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network","title_sort":"Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural network"}],"note":["Gesehen am 14.11.2023"],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"7 February 2022"}],"id":{"eki":["1870252071"],"doi":["10.3390/s22031260"]},"physDesc":[{"extent":"17 S."}],"name":{"displayForm":["Jia-Sheng Hong, Ingo Hermann, Frank Gerrit Zöllner, Lothar R. Schad, Shuu-Jiun Wang, Wei-Kai Lee, Yung-Lin Chen, Yu Chang and Yu-Te Wu"]},"relHost":[{"language":["eng"],"part":{"year":"2022","pages":"1-17","issue":"3","text":"22(2022), 3, Artikel-ID 1260, Seite 1-17","extent":"17","volume":"22"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"331640910","id":{"eki":["331640910"],"issn":["1424-8220"],"zdb":["2052857-7"]},"pubHistory":["1.2001 -"],"origin":[{"publisherPlace":"Basel","dateIssuedDisp":"2001-","dateIssuedKey":"2001","publisher":"MDPI"}],"note":["Gesehen am 12.12.19"],"title":[{"title":"Sensors","title_sort":"Sensors"}],"disp":"Acceleration of magnetic resonance fingerprinting reconstruction using denoising and self-attention pyramidal convolutional neural networkSensors","type":{"bibl":"periodical","media":"Online-Ressource"}}],"recId":"1870252071"} 
SRT |a HONGJIASHEACCELERATI7202