Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence

This article is concerned with the Rabinowitz Floer homology of negative line bundles. We construct a refined version of Rabinowitz Floer homology and study its properties. In particular, we build a Gysin-type long exact sequence for this new invariant and discuss an application to the orderability...

Full description

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Kang, Jungsoo (Author)
Format: Article (Journal)
Language:English
Published: 15 October 2023
In: Advances in mathematics
Year: 2023, Volume: 431, Pages: 1-130
ISSN:1090-2082
DOI:10.1016/j.aim.2023.109252
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2023.109252
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S000187082300395X
Get full text
Author Notes:Peter Albers, Jungsoo Kang
Description
Summary:This article is concerned with the Rabinowitz Floer homology of negative line bundles. We construct a refined version of Rabinowitz Floer homology and study its properties. In particular, we build a Gysin-type long exact sequence for this new invariant and discuss an application to the orderability problem for prequantization spaces. We also construct a short exact sequence for the ordinary Rabinowitz Floer homology and provide computational results.
Item Description:Online verfügbar: 17. August 2023
Gesehen am 23.11.2023
Physical Description:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2023.109252