Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence
This article is concerned with the Rabinowitz Floer homology of negative line bundles. We construct a refined version of Rabinowitz Floer homology and study its properties. In particular, we build a Gysin-type long exact sequence for this new invariant and discuss an application to the orderability...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 October 2023
|
| In: |
Advances in mathematics
Year: 2023, Jahrgang: 431, Pages: 1-130 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2023.109252 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2023.109252 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S000187082300395X |
| Verfasserangaben: | Peter Albers, Jungsoo Kang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 187098269X | ||
| 003 | DE-627 | ||
| 005 | 20240307040823.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 231123s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2023.109252 |2 doi | |
| 035 | |a (DE-627)187098269X | ||
| 035 | |a (DE-599)KXP187098269X | ||
| 035 | |a (OCoLC)1425209359 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence |c Peter Albers, Jungsoo Kang |
| 264 | 1 | |c 15 October 2023 | |
| 300 | |a 130 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online verfügbar: 17. August 2023 | ||
| 500 | |a Gesehen am 23.11.2023 | ||
| 520 | |a This article is concerned with the Rabinowitz Floer homology of negative line bundles. We construct a refined version of Rabinowitz Floer homology and study its properties. In particular, we build a Gysin-type long exact sequence for this new invariant and discuss an application to the orderability problem for prequantization spaces. We also construct a short exact sequence for the ordinary Rabinowitz Floer homology and provide computational results. | ||
| 650 | 4 | |a Floer Gysin exact sequence | |
| 650 | 4 | |a Negative line bundles | |
| 650 | 4 | |a Rabinowitz Floer homology | |
| 700 | 1 | |a Kang, Jungsoo |e VerfasserIn |0 (DE-588)1221837737 |0 (DE-627)174027914X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 431(2023) vom: Okt., Artikel-ID 109252, Seite 1-130 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence |
| 773 | 1 | 8 | |g volume:431 |g year:2023 |g month:10 |g elocationid:109252 |g pages:1-130 |g extent:130 |a Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2023.109252 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S000187082300395X |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20231123 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110400 |e 110000PA129903817 |e 110400PA129903817 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN187098269X |e 4416208774 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Albers, Peter","given":"Peter","family":"Albers"},{"given":"Jungsoo","family":"Kang","role":"aut","roleDisplay":"VerfasserIn","display":"Kang, Jungsoo"}],"title":[{"title":"Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence","title_sort":"Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence"}],"note":["Online verfügbar: 17. August 2023","Gesehen am 23.11.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"187098269X","name":{"displayForm":["Peter Albers, Jungsoo Kang"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"15 October 2023"}],"id":{"doi":["10.1016/j.aim.2023.109252"],"eki":["187098269X"]},"physDesc":[{"extent":"130 S."}],"relHost":[{"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"part":{"extent":"130","volume":"431","text":"431(2023) vom: Okt., Artikel-ID 109252, Seite 1-130","pages":"1-130","year":"2023"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"language":["eng"],"recId":"268759200","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Rabinowitz Floer homology of negative line bundles and Floer Gysin sequenceAdvances in mathematics","note":["Gesehen am 14.09.2020"]}]} | ||
| SRT | |a ALBERSPETERABINOWITZ1520 | ||