Compairing categories of Lubin-Tate (ϕL, ΓL) modules

In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the se...

Full description

Saved in:
Bibliographic Details
Main Authors: Schneider, Peter (Author) , Venjakob, Otmar (Author)
Format: Article (Journal)
Language:English
Published: 2023
In: Results in mathematics
Year: 2023, Volume: 78, Issue: 6, Pages: 1-36
ISSN:1420-9012
DOI:10.1007/s00025-023-01998-0
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00025-023-01998-0
Get full text
Author Notes:Peter Schneider and Otmar Venjakob
Description
Summary:In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the sense of Kedlaya and Liu.
Item Description:Online veröffentlicht: 9. September 2023
Gesehen am 23.11.2023
Physical Description:Online Resource
ISSN:1420-9012
DOI:10.1007/s00025-023-01998-0