Compairing categories of Lubin-Tate (ϕL, ΓL) modules

In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schneider, Peter (VerfasserIn) , Venjakob, Otmar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Results in mathematics
Year: 2023, Jahrgang: 78, Heft: 6, Pages: 1-36
ISSN:1420-9012
DOI:10.1007/s00025-023-01998-0
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00025-023-01998-0
Volltext
Verfasserangaben:Peter Schneider and Otmar Venjakob
Beschreibung
Zusammenfassung:In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the sense of Kedlaya and Liu.
Beschreibung:Online veröffentlicht: 9. September 2023
Gesehen am 23.11.2023
Beschreibung:Online Resource
ISSN:1420-9012
DOI:10.1007/s00025-023-01998-0