Compairing categories of Lubin-Tate (ϕL, ΓL) modules
In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the se...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2023
|
| In: |
Results in mathematics
Year: 2023, Jahrgang: 78, Heft: 6, Pages: 1-36 |
| ISSN: | 1420-9012 |
| DOI: | 10.1007/s00025-023-01998-0 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00025-023-01998-0 |
| Verfasserangaben: | Peter Schneider and Otmar Venjakob |
| Zusammenfassung: | In the Lubin–Tate setting we compare different categories of (ϕL, Γ)-modules over various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decompleting, but not decompleting tower in the sense of Kedlaya and Liu. |
|---|---|
| Beschreibung: | Online veröffentlicht: 9. September 2023 Gesehen am 23.11.2023 |
| Beschreibung: | Online Resource |
| ISSN: | 1420-9012 |
| DOI: | 10.1007/s00025-023-01998-0 |