Projective self-dual polygons in higher dimensions

This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every p...

Full description

Saved in:
Bibliographic Details
Main Author: Chavez-Caliz, Ana (Author)
Format: Article (Journal)
Language:English
Published: 17. Oktober 2023
In: Advances in geometry
Year: 2023, Volume: 23, Issue: 4, Pages: 567-582
ISSN:1615-7168
DOI:10.1515/advgeom-2023-0024
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/advgeom-2023-0024
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0024/html
Get full text
Author Notes:Ana Chavez-Caliz
Description
Summary:This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every pentagon in ℝℙ 2 is invariant under the Pentagram map.
Item Description:Gesehen am 27.11.2023
Physical Description:Online Resource
ISSN:1615-7168
DOI:10.1515/advgeom-2023-0024