Projective self-dual polygons in higher dimensions
This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every p...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
17. Oktober 2023
|
| In: |
Advances in geometry
Year: 2023, Volume: 23, Issue: 4, Pages: 567-582 |
| ISSN: | 1615-7168 |
| DOI: | 10.1515/advgeom-2023-0024 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/advgeom-2023-0024 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0024/html |
| Author Notes: | Ana Chavez-Caliz |
| Summary: | This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every pentagon in ℝℙ 2 is invariant under the Pentagram map. |
|---|---|
| Item Description: | Gesehen am 27.11.2023 |
| Physical Description: | Online Resource |
| ISSN: | 1615-7168 |
| DOI: | 10.1515/advgeom-2023-0024 |