Projective self-dual polygons in higher dimensions
This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every p...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
17. Oktober 2023
|
| In: |
Advances in geometry
Year: 2023, Jahrgang: 23, Heft: 4, Pages: 567-582 |
| ISSN: | 1615-7168 |
| DOI: | 10.1515/advgeom-2023-0024 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/advgeom-2023-0024 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0024/html |
| Verfasserangaben: | Ana Chavez-Caliz |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1871308283 | ||
| 003 | DE-627 | ||
| 005 | 20250530000735.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 231127s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1515/advgeom-2023-0024 |2 doi | |
| 035 | |a (DE-627)1871308283 | ||
| 035 | |a (DE-599)KXP1871308283 | ||
| 035 | |a (OCoLC)1425209033 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Chavez-Caliz, Ana |d 1990- |e VerfasserIn |0 (DE-588)1311340300 |0 (DE-627)1871309743 |4 aut | |
| 245 | 1 | 0 | |a Projective self-dual polygons in higher dimensions |c Ana Chavez-Caliz |
| 264 | 1 | |c 17. Oktober 2023 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.11.2023 | ||
| 520 | |a This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every pentagon in ℝℙ 2 is invariant under the Pentagram map. | ||
| 650 | 4 | |a Pentagram map | |
| 650 | 4 | |a projective geometry | |
| 650 | 4 | |a Self-dual polygons | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in geometry |d Berlin [u.a.] : de Gruyter, 2001 |g 23(2023), 4, Seite 567-582 |h Online-Ressource |w (DE-627)327307102 |w (DE-600)2043066-8 |w (DE-576)096188839 |x 1615-7168 |7 nnas |a Projective self-dual polygons in higher dimensions |
| 773 | 1 | 8 | |g volume:23 |g year:2023 |g number:4 |g pages:567-582 |g extent:16 |a Projective self-dual polygons in higher dimensions |
| 856 | 4 | 0 | |u https://doi.org/10.1515/advgeom-2023-0024 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0024/html |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20231127 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1311340300 |a Chavez-Caliz, Ana |m 1311340300:Chavez-Caliz, Ana |d 110000 |d 110400 |e 110000PC1311340300 |e 110400PC1311340300 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1871308283 |e 4418522778 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1871308283","note":["Gesehen am 27.11.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Projective self-dual polygons in higher dimensions","title_sort":"Projective self-dual polygons in higher dimensions"}],"person":[{"roleDisplay":"VerfasserIn","display":"Chavez-Caliz, Ana","role":"aut","family":"Chavez-Caliz","given":"Ana"}],"relHost":[{"part":{"year":"2023","issue":"4","pages":"567-582","volume":"23","text":"23(2023), 4, Seite 567-582","extent":"16"},"pubHistory":["1.2001 -"],"recId":"327307102","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Projective self-dual polygons in higher dimensionsAdvances in geometry","note":["Gesehen am 16.12.24"],"title":[{"title":"Advances in geometry","title_sort":"Advances in geometry"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2043066-8"],"eki":["327307102"],"doi":["10.1515/advg"],"issn":["1615-7168"]},"origin":[{"publisherPlace":"Berlin [u.a.]","dateIssuedDisp":"2001-","dateIssuedKey":"2001","publisher":"de Gruyter"}]}],"physDesc":[{"extent":"16 S."}],"id":{"eki":["1871308283"],"doi":["10.1515/advgeom-2023-0024"]},"origin":[{"dateIssuedDisp":"17. Oktober 2023","dateIssuedKey":"2023"}],"name":{"displayForm":["Ana Chavez-Caliz"]}} | ||
| SRT | |a CHAVEZCALIPROJECTIVE1720 | ||