Neural dependency parser with biaffine attention and BERT embeddings

This resource contains the code of the dependency parser used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The parser is a re-implementation of the neural dependency parser from Dozat and Manning (2017) and is extended to use the BERT language m...

Full description

Saved in:
Bibliographic Details
Main Authors: Do, Bich-Ngoc (Author) , Rehbein, Ines (Author)
Format: Database Research Data
Language:English
Published: Heidelberg Universität 2023-11-13
DOI:10.11588/data/0U6IWL
Subjects:
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/0U6IWL
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/0U6IWL
Verlag, kostenfrei, Volltext: https://github.com/bichngocdo/bert-biaffine-parser
Get full text
Author Notes:Bich-Ngoc Do, Ines Rehbein
Description
Summary:This resource contains the code of the dependency parser used in the paper: Do and Rehbein (2020). "Parsers Know Best: German PP Attachment Revisited". The parser is a re-implementation of the neural dependency parser from Dozat and Manning (2017) and is extended to use the BERT language model as input features. The pre-trained models on the German dataset of the SPMRL 2014 Shared Task used to report results in the paper are also included.
Item Description:Produktionsdatum: 2020
Gesehen am 22.11.2023
Physical Description:Online Resource
DOI:10.11588/data/0U6IWL