Resolving vibrations in a polyatomic molecule with femtometer precision via x-ray spectroscopy

We measure molecular vibrations with femtometer precision via resonance energy shifts using time-resolved x-ray absorption spectroscopy. For a demonstration, a Raman process excites the A1g mode in gas-phase SF6 molecules with an amplitude of approximately 50fm, which is probed by a time-delayed sof...

Full description

Saved in:
Bibliographic Details
Main Authors: Rupprecht, Patrick (Author) , Aufleger, Lennart (Author) , Heinze, Simon (Author) , Magunia, Alexander (Author) , Ding, Thomas (Author) , Rebholz, Marc (Author) , Amberg, Stefano (Author) , Mollov, Nikola (Author) , Henrich, Felix (Author) , Haverkort, Maurits W. (Author) , Ott, Christian (Author) , Pfeifer, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 27 September 2023
In: Physical review
Year: 2023, Volume: 108, Issue: 3, Pages: 1-7
ISSN:2469-9934
DOI:10.1103/PhysRevA.108.032816
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevA.108.032816
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.108.032816
Get full text
Author Notes:Patrick Rupprecht, Lennart Aufleger, Simon Heinze, Alexander Magunia, Thomas Ding, Marc Rebholz, Stefano Amberg, Nikola Mollov, Felix Henrich, Maurits W. Haverkort, Christian Ott, and Thomas Pfeifer
Description
Summary:We measure molecular vibrations with femtometer precision via resonance energy shifts using time-resolved x-ray absorption spectroscopy. For a demonstration, a Raman process excites the A1g mode in gas-phase SF6 molecules with an amplitude of approximately 50fm, which is probed by a time-delayed soft-x-ray pulse at the sulfur L2,3 edge. Mapping the extremely small measured energy shifts to internuclear distances requires an understanding of the electronic contributions provided by a many-body ab initio simulation. Our study establishes core-level spectroscopy as a precision tool for time-dependent molecular-structure metrology.
Item Description:Gesehen am 05.12.2023
Physical Description:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.108.032816