Topological quantum field theories from Hecke algebras
We construct one-dimensional non-commutative topological quantum field theories (TQFTs), one for each Hecke algebra corresponding to a finite Coxeter system. These TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured surfaces. There is a graphical way to c...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
May 22, 2023
|
| In: |
Representation theory
Year: 2023, Jahrgang: 27, Heft: 9, Pages: 248-291 |
| ISSN: | 1088-4165 |
| DOI: | 10.1090/ert/640 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/ert/640 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/ert/2023-27-09/S1088-4165-2023-00640-1/ |
| Verfasserangaben: | Vladimir Fock, Valdo Tatitscheff, and Alexander Thomas |
| Zusammenfassung: | We construct one-dimensional non-commutative topological quantum field theories (TQFTs), one for each Hecke algebra corresponding to a finite Coxeter system. These TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured surfaces. There is a graphical way to compute the invariant using minimal colored graphs. We give explicit formulas in terms of the Schur elements of the Hecke algebra and prove positivity properties for the invariants when the Coxeter group is of classical type, or one of the exceptional types H3, E6 and E7. |
|---|---|
| Beschreibung: | Gesehen am 11.12.2023 |
| Beschreibung: | Online Resource |
| ISSN: | 1088-4165 |
| DOI: | 10.1090/ert/640 |