Topological quantum field theories from Hecke algebras

We construct one-dimensional non-commutative topological quantum field theories (TQFTs), one for each Hecke algebra corresponding to a finite Coxeter system. These TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured surfaces. There is a graphical way to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fok, Vladimir A. (VerfasserIn) , Tatitscheff, Valdo (VerfasserIn) , Thomas, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 22, 2023
In: Representation theory
Year: 2023, Jahrgang: 27, Heft: 9, Pages: 248-291
ISSN:1088-4165
DOI:10.1090/ert/640
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/ert/640
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/ert/2023-27-09/S1088-4165-2023-00640-1/
Volltext
Verfasserangaben:Vladimir Fock, Valdo Tatitscheff, and Alexander Thomas
Beschreibung
Zusammenfassung:We construct one-dimensional non-commutative topological quantum field theories (TQFTs), one for each Hecke algebra corresponding to a finite Coxeter system. These TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured surfaces. There is a graphical way to compute the invariant using minimal colored graphs. We give explicit formulas in terms of the Schur elements of the Hecke algebra and prove positivity properties for the invariants when the Coxeter group is of classical type, or one of the exceptional types H3, E6 and E7.
Beschreibung:Gesehen am 11.12.2023
Beschreibung:Online Resource
ISSN:1088-4165
DOI:10.1090/ert/640