Patient-derived tumor organoids for guidance of personalized drug therapies in recurrent glioblastoma

An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of dr...

Full description

Saved in:
Bibliographic Details
Main Authors: Ratliff, Miriam (Author) , Kim, Hichul (Author) , Qi, Hao (Author) , Kim, Minsung (Author) , Ku, Bosung (Author) , Domínguez Azorín, Daniel (Author) , Hausmann, David (Author) , Khajuria, Rajiv Kumar (Author) , Patel, Areeba (Author) , Maier, Elena (Author) , Cousin, Loic (Author) , Ogier, Arnaud (Author) , Sahm, Felix (Author) , Etminan, Nima (Author) , Bunse, Lukas (Author) , Winkler, Frank (Author) , El-Khoury, Victoria (Author) , Platten, Michael (Author) , Kwon, Yong-Jun (Author)
Format: Article (Journal)
Language:English
Published: 12 June 2022
In: International journal of molecular sciences
Year: 2022, Volume: 23, Issue: 12, Pages: 1-16
ISSN:1422-0067
DOI:10.3390/ijms23126572
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/ijms23126572
Verlag, kostenfrei, Volltext: https://www.mdpi.com/1422-0067/23/12/6572
Get full text
Author Notes:Miriam Ratliff, Hichul Kim, Hao Qi, Minsung Kim, Bosung Ku, Daniel Dominguez Azorin, David Hausmann, Rajiv K. Khajuria, Areeba Patel, Elena Maier, Loic Cousin, Arnaud Ogier, Felix Sahm, Nima Etminan, Lukas Bunse, Frank Winkler, Victoria El-Khoury, Michael Platten and Yong-Jun Kwon
Description
Summary:An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of drug candidates against patient-derived glioblastoma organoids (PD-GBO) holds promise as an empirical method to preclinically discover potentially effective treatments of individual tumors. Here, we describe our establishment of a PD-GBO-based functional profiling platform and the results of its application to four patient tumors. We show that our PD-GBO model system preserves key features of individual patient glioblastomas in vivo. As proof of concept, we tested a panel of 41 FDA-approved drugs and were able to identify potential treatment options for three out of four patients; the turnaround from tumor resection to discovery of treatment option was 13, 14, and 15 days, respectively. These results demonstrate that this approach is a complement and, potentially, an alternative to current molecular profiling efforts in the pursuit of effective personalized treatment discovery in a clinically relevant time period. Furthermore, these results warrant the use of PD-GBO platforms for preclinical identification of new drugs against defined morphological glioblastoma features.
Item Description:Gesehen am 06.02.2024
Physical Description:Online Resource
ISSN:1422-0067
DOI:10.3390/ijms23126572