Nucleosome repositioning in chronic lymphocytic leukemia

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide compari...

Full description

Saved in:
Bibliographic Details
Main Authors: Piroeva, Kristan V. (Author) , McDonald, Charlotte (Author) , Xanthopoulos, Charalampos (Author) , Fox, Chelsea (Author) , Clarkson, Christopher T. (Author) , Mallm, Jan-Philipp (Author) , Vainshtein, Yevhen (Author) , Ruje, Luminita (Author) , Klett, Lara C. (Author) , Stilgenbauer, Stephan (Author) , Mertens, Daniel (Author) , Kostareli, Efterpi (Author) , Rippe, Karsten (Author) , Teif, Vladimir (Author)
Format: Article (Journal)
Language:English
Published: December 2023
In: Genome research
Year: 2023, Volume: 33, Issue: 10, Pages: 1649-1661
ISSN:1549-5469
DOI:10.1101/gr.277298.122
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1101/gr.277298.122
Verlag, kostenfrei, Volltext: https://genome.cshlp.org/content/33/10/1649
Get full text
Author Notes:Kristan V. Piroeva, Charlotte McDonald, Charalampos Xanthopoulos, Chelsea Fox, Christopher T. Clarkson, Jan-Philipp Mallm, Yevhen Vainshtein, Luminita Ruje, Lara C. Klett, Stephan Stilgenbauer, Daniel Mertens, Efterpi Kostareli, Karsten Rippe and Vladimir B. Teif
Description
Summary:The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes—the nucleosome repeat length (NRL)—is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.
Item Description:Online verfügbar: 12. September 2023
Gesehen am 07.02.2024
Physical Description:Online Resource
ISSN:1549-5469
DOI:10.1101/gr.277298.122